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1 Summary of the Research Results

The following goals have been accomplished in the course of this research:

1. We have developed an analytic Green’s function method for pseudo-spectral numerical
simulations of boundary layer and channel flows (Domaradzki 1990). The new method
reduces number of Poisson and Helmholtz equations that must be solved numerically in
classical pseudo-spectral Navier-Stokes solvers, bringing significant savings in computer
time needed to perform direct numerical simulations for such flows. The method has
been implemented in boundary layer and Rayleigh-Benard convection solvers used at

USC.

2. The numerical code was used to simulate burst-like events in a laminar boundary layer.
Localized bursts were obtained by applying appropriately chosen suction/blowing bound-
ary conditions at the wall and large scale features of the flow were modeled by finite
amplitude travelling wave states in boundary layer flows over rigid walls. Conclusions
from the simulations were as follows. Applied suction/blowing mechanism at the wall
induced desired burst-like flow structures and large scale structures could be effectively
modeled through nonlinear finite amplitude Tollmien-Schlichting waves. The low am-
plitude wall forcings resulted in viscously damped perturbations and higher amplitudes
led quickly to turbulence. None of these behaviors reproduces desired time-behavior of
natural turbulent bursts and we had to conclude that the selected numerical methodol-
ogy was unable to provide a realistic model of a burst, in particular its finite life-span.

3. We have developed four models of a wall-pressure associated with a turbulent burst.
Three of these models are purely analytical and one was obtained using results of direct
numerical simulations of turbulent, three-dimensional boundary layer performed by
Spalart at NASA-Ames. The last model is a single high pressure region on a rigid wall
underneath turbulent boundary layer. The pressure pulse evolves in time changing
its strength, shape and location. To capture the pulse and its evolution all other
neighbouring high pressure regions present in the simulations are selectively suppressed
and the results for the remaining pulse given on a finite mesh in the (x,y) plane and
for a finite number of time steps are interpolated to provide a continuous function of
the spatial variables (x,y) and time t with the results of the fitting procedure stored
on a tape.

4. A theoretical investigation was conducted of the process of sound generation by a
deterministic pressure pulse in a fluid flowing over a compliant coating containing a
small inhomogeneity with the results described in detail in a paper by Domaradzki et
al. (1992).

To leading order the void inhomogeneity can be treated as a monopole source, its
strength determined by the detailed form of the pressure at the interface between the
fluid and the coating. Four different models of the pressure pulse were employed to
specify the monopole strength. For three of these models, a concentrated force advected




with constant velocity U,, the pressure field of an advected vortex, and the wall pressure
of a turbulent burst, pressure values are strictly positive. In all these three cases the
frequency dependence of the monopole strength exhibits the same, generic behaviour:
a large, almost constant plateau in the range of subconvective frequencies wh/U, < 1,
followed by a fairly rapid decrease in the range 1 < wh/U.. The remaining model
satisfies the Kraichnan-Phillips condition and the associated monopole strength differs
from those computed for the other three models only by exhibiting a maximum at a
finite, instead of zero, frequency.

The far field acoustic pressure in the fluid and in the coating due to the inhomogeneity
has been calculated. In the interesting case of water flow over a particular rubber-like
coating the sound has dipole character in the fluid, whereas in the coating there is a
gradual change from monopole to dipole radiation when the radiation direction changes
from the normal to the tangent to the interface. Also, in this case the coating always
captures most of the sound energy scattered by the inhomogeneity.

A comparison was made between the sound generated by a single pressure pulse and
the sound generated by the scattering of the statistically stationary turbulent boundary
layer pressures by the inhomogeneity. Only those events in the boundary layer which
contribute to the convective peak in the wall pressure spectrum were taken into account.
For the particular set of the parameters considered in this paper, in the range of high
acoustic frequencies, the average intensity of the radiation induced by the individual
pressure pulses can exceed the averaged intensity of the sound induced by the turbulent
boundary layer by 10-40 dB. It is thus expected that the presence of deterministic
pressure pulses in the turbulent boundary layer will result in bursts of acoustic radiation
with the intensities substantially greater than those predicted by the statistical approach.

. Diffraction of elastic waves by multiple dipping layers of arbitrary shape for two and
three dimensional models in the absence of fluid for incident plane P, SV, SH and
Rayleigh waves was investigated. Both steady state and transient results were ob-
tained. We found that the presence of irregularity greatly changes local response of
the media. In addition, we found that for highly irregular scatterers the importance
of three dimensional nature of the problem cannot be accurately described with two
dimensional model. In particular, the SH to P/SV mode conversion is found to be
significant in many cases. This conversion cannot be accounted with two dimensional
models.

. Diffraction of elastic waves in a multilayered plate with an inclusion of arbitrary shape
submerged in fluid is the second class of problems which have been completed in this
project. Steady state and transient solutions were obtained for both two dimensional
and three dimensional models. Parametric studies were performed in order to gain
understanding of the wave amplification at the fluid-solid interface for a wide range
of parameters present in the problem such as the angle of incicence and frequency of
incident wave, impedance contrast of the materials, and the geometry of the inclusion.
To our knowledge these solutions are the most general ones available in literature at
the present time.
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6 Research Results

This section consists of published/accepted journal papers and one unpublished report, which
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Note

An Analytic Green's Functions Method in
Pseudo-Spectral Navier-Stokes Solvers for
Boundary Layer and Channel Fiows

In pseudo-spectral simulations of a flow between rigid paraliel plates with
periodic boundary conditions in the horizontal directions, a number of different
numerical methods are currently in use. These methods are briefly reviewed by
Gottlieb er al. [1]. The differences among the methods amount essentially -to
different ways of imposing the incompressibility condition on the flow and this in
turn is directly related to their efficiency in terms of computer storage and time
required to perform simulations with a given spatial and temporal resolution. All
these methods [2-8] treat the nonlinear terms in the Navier-Stokes equations
explicitly and the pressure and viscous terms implicitly. The implicit part must be
solved by inverting matrices resulting from spatial discretization of the pressure and
viscous terms.

The most efficient methods in terms of computer time and storage are based on
expansions of the velocity field into divergence free basis functions [4, 5]. Their dis-
advantage is that the basis functions must be constructed individually for each flow
geometry and the inversion of the resulting matrices may require new algorithms
for each geometry. For that reason, methods that can be reduced to solving sequen-
ces of standard Poisson and Helmholtz equations are more popular. Among these
methods the most efficient is the full time splitting method of Orszag and Kells [8]
that requires inversion of four N by N matrices for each horizontal wavenumber
(k., k,), where N is the number of mesh points between the plates. The matrices
result from a sequence of four Poisson and Helmholtz equations and a variety of
numerical schemes exist to acomplish inversions efficiently. The disadvantage of this
method is that it violates incompressibility in a numerical boundary layer of thick-
ness O((v 4¢)"?) at the plates [6] and for this reason it is not used very frequently.

Incompressibility may be enforced by using the capacitance matrix algorithm of
Kleiser and Schumann {7] or the equivalent Green's functions method of
Marcus [3]. The Green’s functions method of Marcus [3] may be implemented
also with four Poisson solvers but ensures incompressibility at the expense of
increasing storage requirements by two auxiliary arrays of size N>. However, such
storage is usually not available in high resolution numerical simulations and in
commonly used Green's functions methods storage requirements are reduced to
those in the full time splitting method, but required computer time increases since
six instead of four Poisson equations must then be solved. Orszag et al. [6] discuss
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ANALYTIC GREEN'S FUNCTIONS METHOD 233

such a Green's functions method for a channel flow that reauires six Poisson
solvers. The capacitance matrix algorithm of Kleiser and Schumann [7] also
requires six Helmholtz solvers. In essence, the Green's functions methods use cither
more computer time or storage than the full time splitting method. This additional
work or storage is a consequence of a need to enforce incompressibility violated by
the full time splitting method.

The purpose of this note is to demonstrate that for channel and for flat plate
boundary layer flow the Green's functions method may be implemented with only
four instead of six Poisson solvers per time step. The savings come from the obser-
vation that two of six Poisson equations may be solved analytically in terms of
elementary functions. The implementation of the method is straightforward and
existing pseudo-spectral computer codes may be easily modified bringing savings in
the computer time. The modifications are described for both a channel and a
boundary layer code.

Fluid is contained between two rigid parallel plates (channel flow) or above one
horizontal plate (boundary layer flow). The : axis of the frame of reference is per-
pendicular to the plates. The velocity field is decomposed into a prescribed time-
independent mean velocity V(z)=(U(z), 0, 0) in the x direction and a perturbation
velocity v(x, y, z) = (u, v, w). The mean velocity is chosen to satisfy the boundary
conditions for the entire flow, e.g., U(-) is the Blasius profile for the boundary layer
flow or a parabolic profile for the channel flow. Therefore the perturbation velocity
satisfies homogeneous boundary conditions at the horizontal boundaries. With this
decomposition the Navier-Stokes equations are

Q=[vxm—-wa:;(_:)]—U(:)~§—:—Vﬂ+ VWi v + V() (la}

V.v=0, (1b)

where @ =V x v is the vorticity and /T=p/p + 1/2v? is the pressure head where p is
the pressure, p is the density, and v is the kinematic viscosity.

Equations (1) are solved by the following pseudo-spectral time splitting method
consisting of three separate fractional steps which advance flow velocities from time
t,tot,,,.In Eq. (1a) the nonlinear term is separated into two components. In the
first fractional step, the component in the square brackets is calculated pseudo-
spectrally and advanced in time using the explicit Adams-Bashforth scheme. In the
second fractional step, the advection part ot .he nonlinear term is diagonalized by
Fourier expansion and is solved by the implicit Crank-Nicolson scheme to reduce
the convective stability restrictions due to the large mean flow U(z). The inter-
mediate velocities resulting from application of these two fractional steps will be
denoted by asterisks. In the third fractional step, pressure and viscous terms with
incompressibility (1b) are solved by the Green's functions method as described by
Marcus [3] for Couette flow and outlined by Orszag es al. [6] for channel flow
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leading to the final velocities at time ¢, , ,. Using Fourier expansions in the horizon-
tal directions for the dependent variable

vix, y,50)= Yy Y alk,, k,, 2 1) explik, x)explik, y), (2)

Imi<M |nl<¥

where k =2nm/L ., k,=2nn/L, are the horizontal wavenumbers and L, and L,
are the periodicity lengths, the following equations in spectral space are obtained
from the pressure and the viscous terms at the last fractional step

'y & p

. -:k,ﬁ-q—v(y—ki—ki) i+ 0(2)) (3a)
A 2

> —ik,ﬁ+v(%—ki—k§)ﬁ (3b)

ow d é? .

% —$ﬁ+v(b?—ki-k§) 0, (3¢)

where U(z) is the horizontal Fourier transform of the mean velocity U(z), which is
nonzero only for (k,, k,) =0. The continuity equation (1b) becomes

ow

3 =0, (4)

ik i+ ik 5 +

Equations (3) are discretized in time using the Crank-Nicolson method for the
viscous term and the full implicit method for the pressure term. Eliminating 1 from
(3a) and (3b), and using the incompressibility condition (4) we get an equation for
W+ ! the vertical component of the velocity at time ¢, ;,

(Dz _kz) (DZ_kZ _722;) wh l(kx’ k'yy Z) = g(kx’ kyv Z), (5)
where
gk k,, z)= (02 -k’ +%;) [(D(ik  &* + ik, 6*) + kel (6)

In (5) and (6) k*=k2+k2, D=0/3z and velocities denoted by asterisks are the
results of the first two fractional steps. Note that these velocities do not satisfy
incompressibility since this condition is imposed only at the last fractional step, so
that the velocity is divergence free after the full time step. Equation (5) must be
solved for each horizontal wavenumber (k. k,) with the boundary conditions
w"*'=0 and Dv"*'=0. The latter condition foilows from {4). In boundary layer
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flow this condition is used only at the lower boundary z=0. Once w"*' is found
then the expression-for 17" *! is

A= 2—;-5 [(D’—-k’)(ik,ﬁ‘ + ik 6% — DW"* ')fv—j—l (ik i* + ik, &% + D" )].
(7)

The horizontal velocity components are obtained from the following Helmholtz
equations

<02 —k’——2—> ﬁ""':;—% ik, deIT"* ' = *] = (D* = k*)u* + 20(z)  (8)

vdt
D -kt =2 ) ot o 2Lk, autnt Z5%] - (D — k) 6@ 9
var)’ -vAtD 4 5% = Jor. ®)

In what follows let us assume that we have efficient numerical solvers for the
channel and the boundary layer flow geometry for the Poisson equation

'(Dz'—kz)f(k.\"kvrv:)=g(k.vvk'\"z) (10a)
and the Helmholtz equation

2
~(Dz—kz—n;)f(k,,k,.,:)=g(k,,k‘,.,:) (10b)

with homogeneous Dirichlet boundary conditions. With these solvers it is a
straightforward task to solve Eqs. (8) and (9) for 4" *' and 5" *'. Equation (5) will
be solved by a modified Green's functions method.

BouNDARY LAYER FLOW

Equation (5) must be solved for all pairs of horizontal wavenumbers (£, k,) in
the domain : € [0, c0) with the boundary conditions

w(0) = w(cc)=Di(0)=0. (11)

Note that in (11) and in all subsequent formulae explicit dependence of various
functions on k., k, is often omitted if it does not lead to confusion. The solution
of (5) is obtained as

w(z)=b_w_(z)+ wy(z), (12)
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where w, is obtained by solving the sequence of equations

(D’-k’—vim) (o) =8(2);  Lo(0)={o(c0)=0 (13a)

(D*=k*)wo(z)={o(z);  wo(0)=wo(0)=0 (13b)
and w_(z) is obtained by solving

(Dz—kz——z—)c_(z)=0; {_(0)=1,{_(0)=0 (14a)
v at

(D*=k)w_(2)=0_(z); w_(0)=w_(0)=0. {(14b)

Constant b _ is determined in such a way that the boundary condition (11) for

Dw(z) is satisfied,

b_ = —Dwy(0)/Dw _(0). (15)

In the Green’s functions method described in [6] if the function w_ (the Green’s

function for this problem) is found in the preprocessing step and is stored, the solu-

tion of (5) requires solution of the two equations (13a) and (13b). If storage is

limited only the boundary values Dw_(0) are stored. To get w, after finding w,

from (13) and b_ from (15) Egs. (13) are solved once more with the following
boundary conditions:

{O=b_, {(o)=0; W0)=0, (c0)=0. (16)
Thus finding W is equivalent to solving numerically four Poisson equations.
A simplification of the Green’s function method discussed here is based on the

observation that Eqs. (14) for the Green's functions may be solved analytically.
Indeed, the solution to Eq. (14a) is

{_(z)=exp(—~xz), (17)
where k = (k% + 2/(v At))""%. A solution to Eq. (14b) is sought as
w_(z)=Ae ** + Be~ ", (18)

Equation (14b) and the boundary conditions are satisfied if
A= —B=v 412 (19)
The derivative of w_ at the boundary needed in (15) is
Dw _(0)=0.5v 4tk — x). (20)
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After numerically solving the two equations (13a) and (13b), the complete solution
w(z) is found from (12), (15), and (18)~(20). The work required is therefore
equivalent to solving numerically only two Poisson equations.

CHANNEL FLow

In the case of the channel flow, Eq. (5) must be solved in the domain
e[ -1, +1] with the fol'owing boundary conditions

W(=1)=w(+1)=DWw(~1)=DW(+1)=0. (21)

In the Green’s functions approach [6] this is done by representing the solution w
as

W2)=b_w_(2)+b.w (2)+wy(2), (22)

where w, is obtained from Eqs. (13) with zero boundary conditions at z= +1, and
the functions w, are solutions of the following sequence of equations

2
(D’—k’—m)ct(:)ﬂ); {(=D)=(,(+1)=1;

(23a)
C+(=1)={_(+1)=0;
(DP=kYyw, =, (o) w(+1)=0 (23b)

Constants b, will be determined from the boundary conditions for Dw(+ 1) (Eq.

(21)).
As in the case of the boundary layer flow Egs. (23) may be solved analytically.

The solution of (23a) is

((2)=A e " +B, e*™, (24)

where x = (k2 + 2/(v 41))"?, and

1 1
= — B_ = A, =8_, B,=A4_.
4- e"—e~ ™ e *—e* (25)

A solution to Eq. (23b) is sought in the following form

wo(z)=C,e*+D, e~ +E e** +F e " (26)
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The constants in (26) are determined from Eq. (23b) and its boundary conditions

cl=222 p_ =4 (27a); (27b)
e —e e —e
v 412 v 412
E_= —W, F_= —m (27¢), (27d)
C.=D_, D,=C_, E,=F_, F,.=E_. (27e)

The boundary conditions (21) are used to get a system of linear equations for b, ,

b,Dw_ (£1)+b_Dw_(x1)= —Dwy(£1). (28)

Using symmetries (27e) we get
Dw_(+1)= —Dw (F1) (29)

and the explicit expression for b, is obtained from (28)
_(—Dw+(i1)Dw°(+l)+Dw+(¥l)Dwo(—l))

bx (Dw, (+ 17— Dw, (= ?) (30)
Expressions for Dw _(+ 1) are gotten from (26),
1 2x 2k
Dw*(_1)"5"‘"[eu—e-“'eu-e-u] (31a)

1 1 1 1 1
Dw+(+l)=-2-vdt[x(l_e_“—l_e“)—k(l_e_“—l_e“)]. (31b)

Note that the solution prceedure must be modified for the wavenumber k =0, since
in this case a solution to (23b) is

we(2)=C,e“+D, e " +E z+F,. (32)
In (32) the constants C,, D, are given by (27a), (27b), and (27¢) and
_=~=F_=jiva, E.=F =-iva (33)

The complete solution is determined by Eq. (22), where w, is obtained by numeri-
cally solving the two equations (13), w, are given by (26) (or (32) for ¥ =0), and
constants b, are given by Eq. (30). Formula (30) involves derivatives of the exact
solution w, and the solution w, which are calculated numerically with necessarily
finite accuracy. For the vertical resolution N <32 modes combining derivatives of
the analytical and the numerical solutions led to slight errors in the constants b, .
In such a case it is advisable to use in (30) boundary derivatives of the function w',
computed numerically in the pre-processing step. This results in cancellation of
errors and improved accuracy for the constants &, . For N> 64 this method does
not improve accuracy any further and formulas (30) and (3!) should be used.
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TABLE [

Comparison between Growth Rates of the
Tollmien-Schlichting Waves Obtained from the
Orr-Sommerfeld Equation (weg) and from
the Navier-Stokes Solver (wys).

Re wos Wis 3
1500  —0.0010049 —0.0010048 10-*
1800  —0.0000991 —0.0000990 10-?

2100  +0.0005267 +0.0005269 3x10~*

Note. The relative error ¢ = (wng — Wog)wos -

NUMERICAL EXAMPLE

To test the above method a pseudo-spectral boundary layer code used previously
by Domaradzki and Metcalfe {9] was modified according to these ideas. The code
used in [9] was derived from the channel code of Orszag and Kells [8] and uses
the full time splitting method which is known to violate the incompressibility condi-
tion. For this reason it generally produces results that are significantly less accurate
than results obtained by numerical codes that satisfy incompressibility. A standard
test of the accuracy of a boundary layer and a channel flow code is made by
comparing growth rates of modes calculated from the Orr-Sommerfeld equation
with growth rates of the same modes predicted by the Navier-Stokes code.

We have performed such tests for the modified code. The Navier-Stokes simula-
tions were initialized with the velocity fields obtained from the most unstable mode
of the Orr-Sommerfeld equation for a wavenumber x=1.0 and three different
Reynolds numbers (based on the boundary layer thickness defined as
8 =6.02(vx/Uy)"?). The amplitude of the wave was chosen as 10> of the free
stream velocity U, so that the nonlinear effects were small. Simulations were
two-dimensional with 65 mesh points in the vertical and 8 points in the horizontal
direction. In Table I the comparison is presented between growth rates of the
Tollmien-Schlichting waves obtained from the Orr-Sommerfeld soiver and results
of numerical solution of the Navier-Stokes equation after 50 time steps. For all
three cases the growth rates predicted by the Navier-Stokes solver agree with the
growth rates calculated from the Orr-Sommerfeld equation up to six significant
figures. This accuracy matches the accuracy of results obtained by Marcus [3] in
a similar test problem for his divergence free code for Couette flow (see Table I in
[3]). Also the relative error ¢ is generally about two orders of magnitude less than
the error observed in simulations performed with the full time splitting method used
in [9] for the boundary layer and in [8] for the channel flow.

In Table II timings for the analytical and numerical Green's functions methods
are presented for the boundary layer code run with a resolution of 64°> modes on
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TABLE 11

CPU Timings (in Seconds) for Different Implementations
- of the Green's Functions Method

Method Full step 3rd step Poisson solver

NA 12.20 9.37 0.50
AA 11.03 8.25 0.50
NF 19.26 16.34 1.64
AF 15.40 12.58 1.58

Note. NA-numerical with an assembly Poisson solver;
AA-analytical with an assembly Poisson solver; NF-
numerical with a Fortran Poisson solver; AF-analytical
with a Fortran Poisson solver. Timings are for the full time
step, the third fractional step (the pressure and viscous
step), and the Poisson solver.

the Cray X-MP. Using the analytical Green’s functions reduces required CPU time
by about 10% (time needed to solve two Poisson equations) as compared with the
methods discussed in [6, 7] which solve all Poisson equations numerically. The
above estimate should be considered as a lower bound since we used a highly
optimized Poisson solver coded in the Assembly language on the Cray X-MP. For
the same Poisson solver coded in Fortran savings in computer time are about 20%
when using the analytical Green’s functions method instead of the numerical one,
since two Poisson solvers saved constitute larger portion of the full time step than
in the previous case. Similar savings were also observed after applying the analytical
Green’s functions methods to modify the numerical code used by Domaradzki and
Metcalfe [10] to simulate Rayleigh-Benard convection between two rigid plates.
The numerical Navier-Stokes solver in [10] uses the Green’s functions method of
reference [6]. How much time will precisely be saved in any particular case
depends on details of a numerical code since savings are equivalent to time needed
to solve two Poisson equations and this time may vary among different codes. In
high resolution numerical simulations an increase by 10-20% in an efficiency of a
numerical code may translate into hours of supercomputer time saved per run.

The incompressibility was checked by comparing individual terms du/dx, dv/dy,
JOw/dz with their sum, which should be equal to zero. At the first mesh point away
from the boundary z =0.000186 the relative error is 2%, dropping to 0.03% at the
second mesh point z =0.00075, and to 0.001% at the third point z =0.00173. This
error in the divergence at the boundary is caused entirely by an inaccuracy of the
order 10~ '° in the numerical calculation of the z-derivative in that region. Close to
the boundary derivatives of the velocity are all of the order 10~ so that the
absolute error of the order 10~ '° has an appreciable effect on the accuracy of the
divergence. The relative error in the divergence becomes uniformly less than 10~°
for =>0.0156.
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CONCLUSIONS

We have shown that the Green’s functions method [3, 6, 7] for the channel and
the flat plate boundary layer flow may be modified by solving analytically several
equations that are usually solved numerically. This modification reduces from six to
four the number of Poisson and Helmholtz equations that must be solved numeri-
cally at each time step. For a typical pseudo-spectral Navier-Stokes solver this
modifications saves about 10% of computer time as compared with the original
method that solves all equations numerically. The amount of required computer
time may be reduced even further as follows. If the vertical component of velocity
w is known and one of the horizontal components of velocity () is determined
from (8) then the other horizontal component may be obtained from the incom-
pressibility condition instead of Poisson Eq. (9). This reduces to three the total
number of Poisson solvers needed per time step. The implementation of the Green's
functions method described in this note is especially attractive in modifying existing
pseudo-spectral codes that use either the Green's functions method [6] or the
equivalent capacitance matrix technique [7]. It may also be attractive in the
development of new codes since an algorithm to solve efficiently Egs. (1) may be
constructed from standard numerical building blocks: Fast Fourier Transform sub-
routines to caiculate the nonlinear terms and Poisson and Helmholtz solvers (with
homogeneous Dirichlet boundary conditions) to treat viscous and pressure effects.
The existence of the analytical Green'’s functions in Navier-Stokes solvers for simple
flat plate and channel flow geometry also suggests that their existence in more
complicated geometries should be investigated.
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Abstract: We have obtained finite amplitude states for boundary layer flow over a flat plate
initializing simulations with the most unstable Tollmien-Schlicting(T-S) waves and advanced
until the amplitudes of all excited modes were found to be saturated. The eigen-functions of the
transverse velocity modes as well as the streamwise velocity modes were observed to be
preserving in shape. However the mean flow correction was observed to be not stabilizing. The
response of this finite amplitude state to a localized perturbation is investigated. Low amplitude
forcing (1% of free stream velocity) led to no significant interaction between the large scales and
the small scale perturbations, but resulted in viscously damped perturbations. Qualitatively,
different behavior was observed in the energy growth rate by varying the amplitude of forcing for
both T-S and finite amplitude state initializations. A 50% distribution of Chebyshev points in the
vertical direction in the boundary layer could best resolve the transverse eigen functions and their
derivatives.

L Introduction. A sizeable scientific community agrees that the turbulent burst cycle is the single
most important event for wall bounded flows. There are a large number of models pertaining to
the appearance and the activities of these structures and their role in the flow properties. Bursts are
rare, intense hydrodynamic events in turbulent boundary layers and result in high wall pressure
peaks which advect with the mean flow and may serve as sources of acoustic radiation. The most
important feature of natural bursts in turbulent boundary layers is their random occurrence. Apart
from the difficulties associated in resolving the vortex structures over a large range of length
scales (typically 107), the long memory of the flow complicates the understanding between the
observed effects and external stimuli. According to Acarlar and Smith,(JFM 1987, Vol-175, pp.
43-83) artificially creating an inflectional profile yield similar flow structures and behavior as
observed in a turbulent boundary layer. Controlled experiments would be useful in understanding
turbulent flow structures. However, it is essential to note that by considering artificial bursts large
scale turbulent structures responsible for terminating bursts are removed. The evolution of pairs
of counter rotating vortices (figure-1) generated by suction-blowing mechanism gave the required
structure for study, as a model problem.

I Details of N ical simulati
Nonlinear stability analysis of laminar boundary layer flow predicts existence of finite amplitude

time periodic waves for supercritical Reynolds numbers in the vicinity of the lower branch of the
stability curve(figure-2). We have attempted to perform pseudospectral numerical simulations for
finite amplitude states in a boundary layer and study their interaction with T-S waves and wall
forcing. Crank Nicolson time stepping is used. Pressure and viscous terms are handled implicitly
and nonlinear terms are handled using Adams-Bashforth explicit scheme. Mean flow diffusion
term was switched off to prevent boundary layer growth in the computational cell.
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Breuer’s Initialization(JFM 1990 Vol 220, pp595-621); The initial disturbance used is comprised
of two pairs of counter rotating vortices defined by the following velocity field at t=0. Figures 3(a)
and 3(b) show the streamwise and spanwise perturbation field in the horizontal and vertical planes
at the end of first time step.

u=90
v = -0.2xy (322— 274 e-(xzﬂzﬂz)

2 2 2
w = 02xz° (1-2y}) e & 7 *%)

where x=x/L,, y=y/L, and 2z=2/L, where x, y, z are the cartesian coordinates,
L,=508] L =608, L,=128 and 8 is the displacement thickness of the boundary layer.

This initial field gives a peak-peak value of w about 7% of free stream velocity at ( JT 0, J— ).
The size of the computational box is 100 Sd by 50 8° 4. Reynolds number based on ti'le boundary
layer thickness is 3325.

Poi Equation for P head:
A Poisson equation for pressure head is obtained by taking the divergence of N-S equations and is
given by

(D*-¥m! = ikx(vxm):+iky(vxco);+a%(vxm):—ikxv’(z)w"
+ U@ +kk,U )V - ik,U (2) Sw"

where D=-‘;iz. This is solved with the boundary condition

ol 3%
_. _vr

where u,v,wand I are in spectral space.
The expression for the pressure head employing Green’s function method (Domaradzki, J.
Comput. Phys. 1990, vol. 88) in spectral space is
—kz ,
m**'(2) = S (I, (0) —vw"(0)) +11,,(2)

where 11, (2) satisfies
(D*-#)11, = g(2),I1,(0) = 0,1 (=) =0

where
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g8(2) = ikx(vxm):+iky(vxm);+§az(vxm):—ik,U’(z)w"
+ U (" + kU (2) v"-ik,,U(z)g_zw"

This method when used as a diagnostic gave the correct structure for the pressure field.
Alternatively,

D*-BHmt! = ‘_2' (D* -1+ -V}A—t) (i +ik V" +Dw")

where u”, V", w" are the fractional step streamwise, spanwise and vertical velocities.
This is solved with the following boundary conditions ((a) and (b))

®) pr*+|, = vDHw"*!

This gives 2 7 *
n+1 - _l_ d _V(d- n+1, d
@I " (2) = Z (_dzn" 3 (——dzzw +——(dz2 w) ))bl'lo (2) +11_(2)

by M (2 = 1(-4-n -vﬁ"m) M (z) +1_(2)
() k dZ n de . 0 n

However the pressure head was found to be not sensitive to the type of boundary condition
imposed ((a) or (b)). Though this method gave the correct vertical structure of pressure, it could
not preserve incompressibility. Figures 4(a) and 4(b) depict pressure head in the vertical and
horizontal planes respectively in the first few steps.

An altermate numerical scheme for the explicit handling of nonlinear terms for the equations
written in the spectral space using the fractional time splitting method:

ou

3 = -wU’ =ik ulU
%‘; = —ik, Uv
? = —-ik Uw
is given by: ¢
(1+ ikaATt) At
u" = ———Ax—u* +U'—2— (W‘ +Wn)
(1- ik"UT)
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. At
(l+lka—2-) .
Ve — "y

. LAt
(l —lkaT)

A
(1 +ik US)

27 &
v = ——————w

. At
(l -lka-z—)

whereu, v, w and U are in spectral space and u*, v*, w* are the intermediate results of velocity in
X, y, 2 directions respectively.
However, the implementation of this scheme did not lead to any improved accuracy.

The distribution of Chebyshev points by an analytical mapping in the vertical direction controls
the grid growth ratios of successive points. We observe that the accuracy of the numerical
derivatives computation is strongly dependent on the uniformity of the grid growth ratios
especially close to the boundary. The present mapping was found to be better than other algebraic
functions explored. For T-S wave initializations, 50% distribution of vertical points in the
boundary layer resolved the transverse velocity modes accurately. The analytical mapping used
has the matrix elements:

ab
(b+2)>

GF(2) =

Finite amplitude state is obtained by 2-D temporal simulations of the most unstable T-S wave
initialization for Re=2170 (based on boundary layer thickness). The point corresponding to z=10
in the physical space is used for normalizing the equilibrium amplitude to A.=0.0023. Temporal
simulations are continued until all the higher modes were saturated.
The governing equation at equilibrium for transfer of energy between spectral modes for finite
amplitude states is given by: dzuo du? * du
= 1 1
V—-z- =W + W, a—-
dz dz 2

where ug and ul* refer to the zero mode and complex conjugate of first mode of the streamwise
velocity respectively in the spectral space.
These finite amplitude states when perturbed by blowing and suction led to large energy growth
during the first phase of blowing. The maximum perturbation measured from the entire flow field
was observed to be periodic in time.

July 3, 1992 [




ATION OF THE R THE -SUCTION

A
A
0h 8*
2.58*
y >
758"
- >
Sucuon
| | | | >
0 1.5 3. 5 t

Mechanism of Blowing & Suction: A slit is made on the boundary at the mid -spanwise
location of width half a boundary layer thickness in the computational box of size 7.58"
and 2.58" in the streamwise and spanwise directions respectively. The blowing is
continued until t=1.5 and suction is enforced after 1.5 units of time.
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1L Oualitative f
(i)The transverse eigen modes and streamwise eigen modes preserve their shkape in the temporal
simulations. Figures 10(a)&(b), 11(a)&(b) show the normalized streamwise first mode real and
imaginary parts at t=0 and t=400 in spectral space. Figures 12(a)&(b) show the trarsverse fourth
mode real part at t=100 and t=200.

(ii)The transverse eigen modes and their derivatives were observed to be smooth and best
resolved for 50% distribution of vertical Chebyshev points in the boundary layer.

(iii)The energy set in the first mode remains approximately constant while higher modes gain
energy by nonlinear interactions and saturate after a certain time. Figures 8(a)&(b) and 9(a)&(b)
depict the streamwise first and fourth velocity modes evolution and their maximum amplitude.
(iv)The structure generated by the wall forcing in the boundary iayer advects in the temporal
simulations. Figures 5(a)&(b) show the streamwise velocity u in the vertical plane at t=10 and
t=25. The flow is from left to right and the structure advects downstream.

(v)Viscous decay of the perturbations occurred for 1.5% boundary layer forcing. Figures 6(a)&(b)
are the contour plots of spanwise velocity v at t=10 and t=25 in the horizontal plane for boundary
layer forcing alone. Figures 13(a)-(d), 14(a)&(b) are the contour plots of streamwise velocity u in
the vertical plane starting from t=0 to t=25. Figures 15(a)&(b) are the contour plots of spanwise
velocity v in the horizontal plane at t=5 and t=25.

(vi)An enormous energy growth rate occurred at 5% wall forcing with T-S wave initialization
while this occurred at 1.25% wall forcing with finite amplitude initialization.

(vii)The maximum streamwise perturbation recorded for the entire flow decays with time, while
perturbation energy growth rate decays at an increasing rate for boundary layer forcing generated
by blowing-suction mechanism (Figures 7(a)&(b)).

(viii)Large scale structures can be effectively modeled through nonlinear, finite amplitude
Tollmien-Schlicting waves.

Data Visualization:

The following color templates, coded on the magnitude of the variable plotted are available from
the authors upon request. They depict a pair of counter rotating vortices localized in the boundary
layer with periodic boundary conditions. They can be observed to be diffusing in time.
Template-1 shows the surface plot of the initial condition for streamwise perturbation obtained
from the most unstable T-S wave initialization.

Template-2 shows the streamwise perturbation surface plot at t=400.

Template-3 is a contour plot of the evolution of a set of counter rotating vortices in the 2-D
simulation at intermediate time t=50.

Template-4 depicts the diffusion of the counter rotating vortices at t=200.

Template-5 is a contour plot of streamwise perturbation in x-z plane(Finite Amplitude state).
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[he table-1 given below shows the amplitude limits, CPU time and minimum required resolution
‘or different types of runs as shown below.

Table-1
physical time CPU time per Min. vertical
Type of run before blowup | Amplitude of forcing iteration resoln.*
B.L. forcing c—emn 1.5% 11 sec 65
B.L. forcing + 5% before blow up 28sec 129
T.S. waves
B.L. 85sec 1.5% 29sec 129
forcing +
FAST** 1.25 sec 1.25%
Conclusions:

(a)Applied suction/blowing mechanism at the wall induces desired flow structures.

(b)Low Amplitude forcing (1.5%U) results in viscously damped perturbations.

‘c)Large Scale structures can be effectively modeled through nonlinear finite amplitude T-S
waves.

(d)No significant interaction between large scales and a small scale perturbation at the low level
of forcing. (up to 1.5%U)

(e)The transverse eigen modes and streamwise eigen modes preserve their shape in the temporal
simulations.

*-To resolve the eigen functions and their derivatives accurately.
**_Finite Amplitude state
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figure -1

Artificial Burst

Pseudospectral numerical code for boundary layer flows employing an-
alytical Green'’s functions method (JAD,J. Comput. Phys.88, (1990))

Suction-blowing boundary conditions to induce two pairs of counter-
rotating vortices (after Breuer, Haritonidis and Landahl JFM 220, 1990).




Large Scale Structure

Nonlinear, finite amplitude Tollmien-Schlichting wave in a laminar bound-
ary layer flow (Sen and Vashist, Proc. R. Soc. Lond. A424, 1989)

figure -2
P. K. Sen and T. K. Vashist

- Linear stability curve
: - Nonlinear stability curve

region of existence of
nonlinear equilibrium
states fore, <0

- region of existence
of nonlinear
equilibrium states
forc,>0

4 .
u(z,z,t) = Zo A, (z,t)em(==)

Linear Tollmien-Schlichting wave: n=1.
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Sound generation by a deterministic, hydrodynamic pressure pulse in a fluid flowing over a
compliant coating with an embedded void inhomogeneity is investigated. The inhomogeneity is
represented by an acoustic monopole and its strength is found for several models of the
pressure pulse. The far-field acoustic pressure is calculated for all models and is compared with
the sound generated by a statistically stationary turbulent boundary layer. It is found that for
certain parameters of the coating, the intensity of scattered sound generated by a deterministic

pulse may exceed by 1040 dB the intensity of sound estimated for the statistical turbulent

boundary layer forcing.
PACS numbers: 43.20.Fn

INTRODUCTION

A turbulent boundary layer flow at low Mach number
over a rigid, uniform plate radiates sound that is determined
by a distribution of quadrupoles resulting from the velocity
fluctuations in the boundary layer.! In practical applica-
tions, the assumption of the rigid, uniform plate is usually
untenable since various inhomogeneities in the plate are in-
troduced by manufacturing processes, and for structural
reasons, often nonrigid, compliant plates are desirable. In a
number of papers, Howe?® has shown that inhomogeneities
in compliant plates will be responsible for acoustic radiation
with intensity levels which may considerably exceed the in-
tensity levels of the background quadrupole radiation. The
mechanism that generates this intense sound has been identi-
fied as a scattering by inhomogeneities of the strong hydro-
dynamic pressure fluctuations from the convective region of
the wall pressure spectrum. Quantitative results for the in-
tensity of the scattered sound are usually arrived at by em-
ploying the phenomenological formulas of Chase’ for the
rigid wall pressure spectrum, which represents the effect of
the wall pressure fluctuations averaged over the ensemble of

statistically stationary turbulent boundary layers. However, |

the statistical representation of the wall pressures masks the
presence of strong, deterministic events in turbulent bound-
ary layers known as bursts. Bursts in turbulent boundary
layers have been identified as relatively rare, spatially local-
ized, short-lived events, with amplitudes considerably larger
than the corresponding statistically averaged quantities.*'°
Despite their rare occurrence, these events contribute signif-
icantly to the Reynolds stress production and drag in the
boundary layers. It also appears that turbulent bursts are
responsible for the generation of localized, high wall pres-
sures beneath turbulent boundary layers. Recently, exten-
sive investigations of the wall pressure properties in turbu-
lent boundary layers have been conducted at the Catholic

University of America. These investigations clearly identi-
fied the presence of large amplitude wall pressure events''
and correlated them with turbulent bursts observed in the
boundary layers.'? The wall pressures associated with burst-
ing events are larger than the rms wall pressure values and
despite their rare occurrence contribute significantly to glo-
bal quantities. Johansson et al.'’ report that pressure peaks
with amplitudes larger than 2.5p,,,., occur during atout 6%
of the total time but contribute about 20% to the long time
rms value of pressure p,.,.. . Karangelen et al.'* observe much
stronger effects, claiming that pressure peaks greater than
3Pems contribute 499 to the rms pressure.

The importance of bursts in the Reynolds stress produc-
tion and in generation of the high wall pressure peaks points
to their possible acoustical importance. In this paper, we
examine a generic problem of scattering of a hydrodynamic
pressure pulse, attributable to a turbulent burst in a fluid, by
an inhomogeneity in a surface coating which lies under the
fluid. The intensities of sound produced by a deterministic
burst are compared with estimates provided for the same
problem by the standard statistical approach.

I. FORMULATION OF THE PROBLEM

We consider the problem of generation of acoustic
waves by a boundary layer flow over a coating containing a
localized inhomogeneity. Inviscid fluid with density p, and
speed of sound ¢, occupies the upper half-space x; > 0. The
coating occupies the lower half-space x, <0, and is itself
modeled as a static, inviscid fluid with density p, and speed
of sound ¢,. The inhomogeneity is modeled as a spherical
void of radius a centered at the point r, = (0,0, — &) (Fig.
1). Acoustic waves are generated by the flow either directly
(e.g., a turbulent boundary layer will produce quadrupole
radiation in the presence of a homogeneous coating) or in-
directly through the process of scattering of hydrodynamic

-
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pressures by the coating inhomogeneity. The void is as-

sumed to be acoustically compact for all significant hydro-
dynamic frequencies; i.e.,

wa/cy,wal/c, €1. (n

Therefore, the inhomogeneity may be treated as equiva- |

lent to a concentrated monopole. With these assumptions,
Lighthill’s aeroacoustic equation determining the acoustic
pressure at point r = (X, ,X;,X; ) = (x,0,2) is

2
(V‘ - :lz- g—) p(re) =T(rt),

14

vl - ———) (r9t) = M(rvt)’
( aat)’

where p(r,t) is the pressure field, T(r,t) is the Lighthill

quadrupole source term, and M(r,?) is a monopole concen-

trated at r, = (0,0, — A),

M(rt) = Q(1)8(x)6(y)6(z + h). (4)

The monopole strength Q(¢) will be determined in the
course of the calculations.

Solutions of Egs. (2) and (3) must satisfy the radiation
conditions of outgoing waves at large distances from the in-
terface, x; — + , and the pressure p(r,r) and normal ve-
locity (or the acceleration (1/p) [dp(r,t)/dx,]) must be
continuous at the interface x; = 0. It is assumed that defor-
mations of the interface by the pressure forces are small and
the interface may be treated as being flat. All propagation
effects associated with the very low Mach number mean flow
have been neglected.

for x; >0, (2)

for x, <0, 3)

il. SOLUTION OF THE GOVERNING EQUATIONS

Equations (2) and (3), with the boundary conditions
specified at the end of the previous section, are conveniently

solved using a Fourier representation. Definitions of the

Fourier transform F(k,x, ) of a function F(x,x,,t) and the
inverse relation used in this paper are

Flkox, @) =f f J'F(x.x,.r)e““*“' dx, dx, dt,(5)

o 2

ot ———ae S —

F(xvx):

xe-"k.l+'“’ dk‘ dk: dmy (6)

where k = (k,,k,) is the two-dimensional wave-number
vector parallel to the interface, x = (x, .x, ) is the projection
of the radial vector r on the interface, and w is the circular
frequency. Analogous formulas for quantities which are
functions of time only are

}"(w) =ff(t)e“"’dl, (N
£ =Ljf(m)e-'~'dw. (8)
27

Fourier transforming Egs. (2) and (3) gives

(——ﬂ,)p(k,zm) T(kzw), for z>0, 'C))

(52—2- - Yf)ﬁ(k.z,w) = Q(w)&(z + h), for z<O,
(10)

where z now denotes the vertical coordinate x,, and

Yo=ykt +ki—w/cs =\k*—a/c, (1)

N =vki +k; —o/ci =k* - a'/cy. (12)
For real & such that k> |w|/¢c, (i =0,1) y, is real and taken
as positive. For ksuch that k < |w|/c,, to satisfy the radiation
condition ¥; must be taken as negative imaginary if o > O and
positive imaginary if w <0.

Solutions of (9) and (10) satisfying either radiation
conditions for |z} — « if k < |@|/c;, or decaying to zero if
k> |w|/¢c,, are then as follows:

pkzw)
= ‘w)e T dy 4 e T
for z>0, (13)
b(kzw) = ‘#a(w)e""”"'dz'+Be""",
for z<O. (14)

Boundary conditions at the interface provide equations
for A and B:

2y 27
Y Tke) _n B+Q("""), (16)
Po 200 P 20,

where

T(kw) = f Fkzw)e ™™ dz, an

0

O(kw) = Q(w)e ™ ™. (18)

The solution to this system of equations is
dm _Tkw) 7o —pots _ Qlkw) __ 2ot

2% P17 +Pon 2y, piYo +pon
.- (19)
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Pi1Yo +Po?h

T(kw)
2%

_ é(k.m) Po¥y — P Yo

27 PiYe +Po¥i
(20)

Using the above formulas, we get explicit expressions
for the pressure field as a function of position r and frequen-

B= —

Cy w:
p(”")"—l— dke M( )
(2m)°
xe_rn“—z’idzl)ﬁ- J.dzk o= r—vol
(27)°
X(—R,. Hko) - P, Q(kw))’ z>0,
2;’0 2}/l
@2n
p(row) = — 1 a(a))fdzk —kex = Vyiz+ A
(2”)2 2 14|
dek -""—mzu( P, T(k.w)
(2”)2 2%
Q(km))
~F <0, (22) .
¢ 2y,

where Pand R are, respectively, the transmission and reflec-
tion coefficients for the boundary layer (subscript T) and
the monopole (subscript Q) radiation:

2p\ % 2p07,

Pr=—————, Pp=o———, 23)
Pi1Yo +Poth P1Yo +po

R, = Pi7%o “Po?’n R =Po7’| — 1Yo ) (24)
PiYo +Po7'l P1Yo +pot

. DETERMINATION OF THE MONOPOLE SOURCE

Pressure fields (21) and (22) are formally determined
by the hydrodynamic forcing 7" and the monopole source Q.
Physically, however, pressure is generated entirely by the
hydrodynamic forces; the monopole source Q is not an inde-

pendent quantity and must be expressed in terms of T. The .

relation between the strength of the monopole and the hy- |
drodynamic forces is found by assuming that the void acts
only as a passive scatterer of the hydrodynamic pressures,
such that the pressure in the void remains at all times con-
stant. Since we are representing the void to leading order

simply as a monopole, we must ignore pressure fluctuations :

in the void associated with shape variations, and must re-
quire that the pressure p(r,w) averaged over the surface of |

the void x? + x} + (x; + h)? = @* vanishes; i.c., the “mon-
opole component’” of the pressure at the void surface is zero.
Thus averaging (denoted by (...)) Eq. (22) over the surface

of the void will provide the required relation between Q and |

T.

The first term in (22) is the direct field of the monopole

in the absence of the interface and thus its contribution is
known to be

~ rol/¢
e“"" fol/€

—_— 25
4r|r — ry| (25)

p(nw) = — @(a)

By virtue of the condition wa/c, €1 [Eq. (1)], its average
over the sphere of radius a centered at r — r, is

(p, (rw)) = — O(w)/4ma. (26)

The second term in Eq. (22) contains contributions
from both the hydrodynamic forces T and from the mono-
pole Q. The factor T(k.w), for given w, is heavily concentrat-
ed around the convective wave number
(k,.k,) = (w/U.,0), where U. is the convection velocity
which, in practical underwater situations, is always much

less than the speed of sound. Therefore, in the term involving

T, we have k = |k + k3 »w/c, and the factor y, may be
approximated by 4. This approximation results in the de-
pendence of the integral on spatial coordinates through
exp( — itkyx, — ik.x, — lezi) which implies that
the contribution p, (r.@) to total pressure coming from the
hydrodynamic forces is a harmonic function. Since the aver-
age of any harmonic function over a sphere is equal to the
value of the function at the center of the sphere (e.g., Tik-
honov and Samarski'® ), we get the following result:

1 2y, —nhp T(R)
(rw))= ———fd'ke np
. ) (2m)? T 2%
~ l fdzk —~ kh T(k,w)
(277) Po +P| N

n

The final term, denoted as p, (r.@), describes the contri-
bution from the monopole radiation reflected from the inter-
face. Averaging this term over a sphere will involve vania-
tions in the variable z of the order a €w/c, . Using this fact
and representing |z| as 4 + Az, where —a<Az< +a, we
get the following approximation for the quantity ¥, |z|:

nifd=rih+kdz=kiz| + (y, — kA (28)

Thus for variations of z over a scale g, the term p, (r.@)
is a harmonic function and its spherical average is its value at
the center of the sphere:

(p,(r,a)))z _ l ((l)) J‘dzk - 2yh RQ(M)
Qn? g

29)

Since the sum of expressions (26), (27), and (29) is to

be set to zero, we get the following result for the strength of

the monopole in terms of the hydrodynamic forces:
O(w) = —(——-”' fd’ke‘*“—T(M))
Po + P k

x(“+—fd2k e RQ(M))
1£
(30)
Further simplification of formula (30) is achieved em-
ploying the assumption that deformations of the interface by
the pressure forces are small. Thus the Lighthill source term
T may be approximated by the equivalent source for a flow
over a flat, rigid plate. In this case, the pressure field forz> 0
is determined by Eq. (2), solved with the boundary condi-
tion dp/dz = O at the interface z = 0. Solution is given by Eq.
(21) with reflection coefficient R = 1 and transmission co-
efficient Py = 0:

-




1 J. 2 - ikex
ro)=— | d*ke
p(rw) )

X ( — [ Rz dz’)
2¥ Jo

-~ eX — Vo2,
(br)zfdzk (

z>0.

T(k.w) )
270 '

(31)
In particular, at z =0,

p(x0w) = — (32)

fdzke—:l-xM'
(2m)? Yo

“The last equation allows us to express the hydrodynamic
forcing Tin terms of the wall pressure transform (spectrum)
P, (k,w) on the rigid plate:

T(ko) = — 1op(k0w) = — 1oPy (k). (33)
In Eq. (30) defining @(w), the main contribution to the
integrai containing 7 comes from wave numbers k such that

k= V‘k Tk »w/c,. Therefore, k = ¥, and the strength of
the monopole can be expressed in terms of the rigid wall
pressure spectrum as

a(w) = (—p—'—-
Po T A

x(—”—-i-_’_J-dzke—Zr.h Re(k.w))‘
a 2
(34)

14
The integrals defining O(w) may be further simplified.

fd*ke-“'r.,(k,w))

Let us introduce the following parameters: acoustic wave -

numbers for both media, x, = |w|/¢,, and x|, = |@|/c,; dis-
tance of the inhomogeneity from the interface in acoustic
wavelength units, € = h |w|/c, = hx, =2wh /A,; ratio of
acoustic wave numbers x = k,/x, = ¢,/C,o; density ratio
o=p,/po-

Using the definitions (5) and (6) of the Fourier trans-
forms, we can write the integral containing P, (k,@) in the
following form:

I (w) = J.dzke""’Po(k,w)

-_-f ) dtfd’x e“"po(x,t)(fd’k e“‘"e""’),
) (35)

where p, (x,?) is the rigid wall pressure distribution. In the
above equation, the Fourier transform of e ~** is calculated
in polar coordinates as

deke**'e-**=zarL dk e =", (k |x))

- 2rh
_ (h2+|x}2)”z,

where J, is the Bessel function of zero order and the last
equality is found from a table of integrals.'® Therefore, the
integral I, (@) is the Fourier transform, in the time domain,
of the wall pressure averaged with the weight function (36):

(36)

!
'

i
!

Po (X.0) )
2 -+-x;‘ +x::)"": '

Ip(w) = Zﬂhf dte“”’(fdzx
~w (h
(37)

The remaining integral in formula (30) is again simplified
using a cylindrical system of coordinates:
2,k RQ (k.w)
14

—inh
e (‘7"/ (e 7’1)

Y oVe + 7

For problems of interest in this paper ¢, > ¢, and thus

Ky <i,. With this ordering of acoustic wave numbers the
integral (38) is split into three parts, involving integration
over k with limits from 0 to «,, from x, to x,, and from x, to
infinity. Changing the variable of integration & to

u=,i¥ —k> in the first two integrals, and to

=y k- ?, in the last one, we get
ln-J. du e~ z“"‘(a—_-_u——u)

oS +u

—ir J" due~ z""‘( — u)
N —S +u

+1Tf due‘z""(i___.ﬁu-_—)’ (39)
0 oS +u+u

where s> = («¢] —&3) = x} (1 — «%). An additional change
of variables u = «, v, and introduction of the nondimen-
sional parameter ¢, give

1 -

= —ﬂf k dk (38)
(]

Ip(w) =

In(@) _ _. fd””"'"(m“?_(l‘?) —v)
(x,7) -1 =H| +v
+I dve~ “’( v+ (1 - )—U),
+(1=xK)+v
(40)

where the dependence on w is through the parameter €.
Therefore, the expression for Q becomes

~ g Ip(w)
Q@) = o+ 1 n/a+ Iy (w) '

where the integrals /, (@) and I, (@) are given by Egs. (37)
and (40), respectively. Note that the strength of the mono-
pole in this equation is expressed entirely through the wall
pressure distribution p, (x,2). Exact frequency dependence
of Q must be obtained through numerical computation of
these integrals for particular p, (x,?) and prescribed values
of the nondimensional parameters.

41)

IV. MODELS OF PRESSURE PULSE

We consider in this section four different models of lo-
calized, wall pressure distributions to evaluate the integral
(37). The simplest model that allows analytical evaluation
of (37) is a concentrated force moving with a constant con-
vection velocity U,, which is a fraction of the mean free
stream velocity U,, along the x, axis:




Po(x8) = P.5(x, — U.0)8(x,). (42)

For this model, which we will refer to as the concentrat-
ed force model, Eq. (37) becomes

£ 1

I [(h/7U)? + 2]
4P

=3 (B x, (),
hU. \U. U

[

1. (w) —erhf dt e

(43)

where K, is the modified Bessel function of the second kind,
of order unity. Employing directly formula (35), with
Py (k.w) calculated as the Fourier transform of (42), gives
the same result, which serves as an independent check of the

.* transformations leading from (35) to (37). The intensity of
the acoustic radiation at any frequency will be proportional
to the square of the absolute value of (43). A plot of this
quantity, normalized by its peak value, is shown in Fig. 2.
The function has its maximum at hw/U, = 0, is relatively
large at subconvective frequencies hw/U,<1 (where here
“subconvective” implies reference to a wave number of or-
der A ~ '), and decays rapidly to zero for hw/U. >5.

A model of a walil pressure distribution associated with a
burst in a turbulent boundary layer was proposed by Dun-
can.'” It has the form of the wall pressure generated by a
two-dimensional vortex moving with velocity U, parallel to
the x axis, at a distance d from the wall:

s ( hu/Uc) K,( hu/Uc) !
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FIG. 2. Frequency dependence of the monopole intensity |Q(w)|* for the
concentrated force model, on log-linear and log-log scales.

a’ M
di+(x-Un)?"’
where the function g(¢) accounts for the fact that the ampli-
tude of the burst varies in time, with maximum
P, =0.00550, U}, and U, = 0.8U, chosen to match the ex-
perimental results of Willmarth.” In this model, subsequent-
ly referred to as the Duncan model, the function g(t) is

Po(x,t) = Ppg(t) (+4)

(1) = 3.7856 exp( — 2t /3)sin(mt /6), 0<i<6,
gler= 0, otherwise,
(45)

where time is nondimensionalized with 6/U_, where § is the
boundary layer thickness, and d = 6/2.

In what follows, we assume that the distance of the in-
homogeneity from the interface is close to the boundary lay-
er thickness. This choice of /1 is motivated by the fact that our
most realistic model, discussed next, is obtained for the
boundary layer flow at Re, =600, where Re, is Reynolds
number based on the momentum thickness. For the flow of
water (kinematic viscosity v = 0.01 cm®/s) with typical free
stream velocity U, = 10 m/s, the boundary layer thickness
is §=~1 mm at this Reynolds number. This last value seems
to be a realistic distance of possible inhomogeneities from the
interface. In any event, inhomogeneities further away than §
from the interface will not be effective as scatterers because
the exponential factors in Eq. (34) put them out of range of
the most energetic pressure fluctuations. For A= 6 Eq. (37)
can be written as follows:
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FIG. 3. Frequency dependence of the monopole intensity | ()| for the
Duncan model, on log-linear and log-log scales.
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4rP,h
(o) = TFp J—thexp(i-h—"it)g(x)e(t), (46)
U. b U

<

where

e(r)—fﬂ dx
-» [1+4(x -0 (1+x)

(47)

Integral (46) has been evaluated numerically and the
square of its normalized absolute value is shown in Fig. 3.
Very much as in the case of the concentrated force, it is
largest at subconvective frequencies hw/U_ <1 and decays
fairly rapidly for Aw/U, > 1. Note, however, that the decay
rate is smaller than for the case of the concentrated force.

In order to obtain the most realistic model of a localized
wall pressure distribution p, (x.7) we have used the results of
direct numerical simulations of a turbulent boundary layer.
The pressure values were calculated by Robinson'® from the
results of numerical simulations of a three-dimensional, tur-
bulent boundary layer over a flat plate performed and de-
scribed in detail by Spalart.'® Data employed in our work
are characterized by the following principal parameters:
Reynolds number, based on the momentum thickness,
Re, = 640; friction velocity u. as a fraction of the free
stream velocity Uy, u_/ U, = 0.0484; time extent of the data
inwall time units, T = = Tu/v = 72; streamwise and span-
wise dimensions of the plate in wall length units,

Wall Pressure 06

230.

FIG. 4. Wall pressure contours from direct numerical simulations. Solid lines correspond to positive values and broken lines to negative values. The mean

flow is from left toright. (2) ¢ = = 6,and (b) 1 =~ = 2}.

6




-

WALL PRESSURE (T=6.0 21.0 51.0)

60.0 T T T T

T T 1 T
502 I~ i
403 - -
w ) :
w1 (@5 ]
108 !~ 84 -
10 1 1 1 1 | 1 [ i

1.0 109 208 30.7 40.6 50.4 603 702 0.1 90.0

FIG. 5. Contours of wall pressures for a single burst at three different times ¢ * = 6, 21, and 51. The mean flow is from left to right.

L; =L u/v=2000and LS =L u./v=1230, respec-
tively. The wall-pressure data made available to the authors
of this paper have the form of 24 distinct datasets, each for a
different time ¢ * which is an integer multiple of Az * = 3.
Each dataset gives normalized pressure p/(p, U ) on a rec-
tangular mesh with 156 points in the streamwise x direction,
and 288 points in the spanwise y direction. Typical appear-
ance of the instantanous wall pressure at two different times
isshown in Fig. 4(a) and (b). The wall pressure has a spotty
character, with a number of localized high-pressure regions.
In Fig. 4, the mean flow direction is from left to right, and
comparison of Fig. 4(a) with (b) reveals that the individual
high-pressure regions move in that direction, and at the same
time change in strength and spatial extent. The convection
velocity U, of high-pressure regions varies between 0.6 U,
and 0.8 U,.

Our primary task was to identify a few pressure pulses
that could serve as useful representations of pressures asso-
ciated with the presence of localized, energetic events in tur-
bulent boundary layers. We will focus our attention on one
such pulse that displayed the desired behavior. The selected
pulse initially was very weak, grew subsequently in strength,
and eventually decayed. Moreover, throughout its evolution
it remained isolated from other high- and low-pressure re-
gions, thus preserving its identity.

pressure pulse was set to zero for ¢+ * =0, it gradually
reached its maximum at ¢t * =20, and decayed to zero at
t * = 70. These resuits may be considered as a realistic mod-
el, which will be referred to as the numerical simulation
model, of a localized wall pressure pulse in 1 turbulent
boundary layer. Note, however, that the individual pressure
pulses vary in strength and spatial extent, and the results
obtained for the particular one chosen here are subject to
similar variations.

Integral (37) has been computed using the above repre-
sentation of po(x,t), assuming U, =0.8 U,, and
h * = hu./v = 300. This last value is approximately equal

' to the boundary layer thickness 8, which for water at this

" Reynolds number is about 1 mm. For the purpose of compu-
" tations the integral (37) is rewritten using wall units, as

After the selection was made, all other pressure pulses

present in the data had to be suppressed. This was achieved
by specifying a point inside the high-pressure region of inter-

est and finding a contour around this point where pressure .
values had falien to a certain specified threshold level. Once

this limit contour was reached, all the other pressure values
beyond it were set to zero. This procedure was incorporated
in a numerical routine and performed for each of 24 datasets.
Finally, a three-dimensional fit of discrete data obtained in
this procedure was carried out using a BS3IN routine from
the IMSL package of mathematical routines, in order togeta
representation continuous in space and in time, of a single-
pressure pulse. Cubic splines were used for the x and y vari-
ables, and a linear fit for the time 7. The large number of
fitting coefficients ( = 10*) precludes the manual use of data.
The coefficients are stored on tape and a computer program
is used to provide a pressure value at a given spatial location,
0<x * <2000, 0<y * <1230, and given time, 0<¢ * <72. In
Fig. 5, we plot the high-pressure region obtained from this
procedure at three different times. The amplitude of this
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FIG. 6. Frequency dependence of the monopole intensity |Q(ar){* for the
numerical simulation model. on log-linear and log-log scales.
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Ip(w™) =27h +/70"("'0‘) f

(h* +x7 "+ x;")”’)
(48)
In Fig. 6, we plot the square of the absolute value of (48),
normalized by the multiplicative factor in front of the inte-
gral, with frequencies @ > converted to nondimensional
units wh /U, =w*h *u./U,. As in the previous case, the
function is approximately constant for the subconvective
frequencies wh /U, < 1, and decays rapidly for wh /U, > 1.
The strength of the monopole Q(w) is proportional to
the integral /, (@), and modified by the w-dependent expres-
sion in the denominator in (41). This expression can be re-
written as follows:

where the integral J(€) = I, (w)/(x, 7) is given by formula
(40). This integral is easily computed numerically and the
results of such integration, in the limit of interest x <1 and
o= 1, are gathered in Table [ for a few values of the param-
eter €. [t is seen that the value of the integral is always much
less than 1 /€ for €< 1/4. Therefore, for a large range of values
of €, to good approximation

dl* e:u‘: -

I (@)
KT

-az+1R(a))=x| h—1-+ (49)

O(w) = -——"—1%1,.@), (50)

g+
and the frequency dependence of a(m) is the same as that of
the function /, (w).

For all models of a localized pressure pulse considered
so far, this frequency dependence exhibits the same generic
features: a large, almost constant plateau in the range of sub-
convective frequencies wh /U, < 1, followed by a fairly rapid
decrease for I<wh /U..

The above models of pressure pulses are strictly of posi-
tive sign. In experiments, Johansson ez al.'* and Karangelen
etal.'* find that conditionally averaged high-pressure events
are indeed predominantly of one sign, either positive or neg-
ative. Use of the negative pressure models will result in a
trivial change of sign in the previous formulas containing the

TABLE 1. Absolute values of integral (40) as a function of € = & |w|/c,, for
o= and x = 0.05.

€ /€ IJ(eY
1.0 1.0 0.36095
0.63 1.6 0.41087
0.40 2.5 0.46036
0.25 40 0.5089%4
0.16 6.3 0.55331
0.10 10.0 0.59123
- 0.063 15.8 0.62230
0.040 25.0 0.64621
0.025 40.0 0.65137
0.016 62.5 0.61286
0.010 100.0 0.52459

- ——— ]}
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wall pressure function. Therefore, the pressure pulse models
used in our work are consistent with the experimental obser-
vations.

However, according to the Kraichnan-Phillips
theorem®®?' the instantaneous surface integral of the un-
steady wall pressure under an incompressible turbulent
boundary layer is zero. This result has recently been rein-
forced by the analysis of Howe?? who showed that any local-
ized hydrodynamic event will produce a nonvanishing net
normal force on the wall only by virtue of edge effects and in
the absence of such effects (an infinite plate) the net force
will be zero. In experimental situations, the Kraichnan-
Phillips condition will be satisfied if positive wall pressure
bursts are balanced by negative ones in other regions of the
wall, or weaker negative pressure regions covering a larger
wall area.

In evaluation of the integral (37), the wall pressure
Do (x,t) is integrated with the weight function (36) which
strongly limits contributions that wall pressures from out-
side the immediate vicinity of the inhomogeneity can make
to the integral. Thus the presence of this weight function in
(37) implies that if the positive pressure event over the in-
homogeneity is balanced by a negative pressure event of
equal strength (to satisfy the Kraichnan-Phillips condition)
away from the inhomogeneity, the monopole strength Q(w)
will be determined primarily by the positive pressure peak.

The above argument does not apply to the case of a high,
positive pressure region surrounded by a region of weaker,
negative pressure values. Even though such events are less
likely to occur than localized bursts of predominantly one
sign, it may be instructive to investigate themn in some detail
since such an analysis may shed more light on the impor-
tance of the Kraichnan-Phillips theorem in the context of
sound generation by localized hydrodynamic forcings.

We will consider the following pressure model:

x — U.t\* x— U.r\?
o= ra S ) (=) )
Do (X,1) »&( )[ 572 572 +

x—=U.t

82 12’
where the pressure amplitude P, and the function g(¢) are
the same as for the%ﬂg?ﬁodel (44), & is the boundary
layer thickness, and U, = 0.8, is the convection velocity.
Formula (51) describes a pressure distribution which at all
times ¢+ has a finite spatial extent § and contains a strong
positive central peak and two smaller, negative side minima.
The constants are chosen such that the pressure integrated
over the wall is zero for all times ¢ and therefore we will refer
to this model as the zero net force model. Integral (37) for
this pressure pulse model is easily reduced to the form (47),
with function e(¢) given by

¢+ 172
e(t) = [80(x —1)* - 24(x—2)2 + 1]

1~ 1/72 1

for é

(51)

dx
+x
(52)
A numerical integration of (47) for this model has been
performed and the square of its normalized absolute value,
which is proportional to !Q(w)|?, is plotted in Fig. 7. The
main qualitative difference between this case and previously
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FIG. 7. Frequency dependence of the monopole intensity Ia( )|? for the
zero net force model satisfying the Kraichnan-Phillips condition, on log~
linear and log-log scales.

considered models is observed in the low-frequency rcgime.'
Whereas for positive pressure pulses the monopole strength

reaches its maximum for  — 0, for the current model satisfy- '

ing the Kraichnan-Phillips condition it has a maximum at a
finite value wh /U, = 1.

V. ACOUSTIC RADIATION FROM THE MONOPOLE
SOURCE

It has been shown by Howe?® that the intensity of
sound produced by scattering of the boundary layer pressure
fluctuations by an inhomogeneity exceeds substantially the
intensity of sound radiated directly by the boundary layer
flow. We may thus expect that the acoustic radiation from
the monopole source will also dominate in our case. In what
follows, we will concentrate our attention on the evaluation
of the far-field acoustic pressure resulting from the presence
of the monopole.

In Eq. (21), the monopole contribution p,, (r,@) to the
total pressure p(r,w) forz>0is

_o@) PR Bl
(27)? % + 7

In the integral (53), when z— o only the wave numbers

from the radiating acoustic domain A} + k3 <« will con-

tribute. Using the radiation condition, for w > 0, this integral

is written as follows:

l’(r.w)=J‘

ki +kicd

+i";o .'k| -kzz)F(k|’k2)’

Pa(rw) = (53)

dk, dk, exp( — ik, x, — ikyx,

(54)

————

where F(k,,k,) =e ""/(ov, + 7,). Projection of the
vector r onto the Oxz plane is denoted by R, and the angle
between R and the x axis is denoted by a. With this notation,
the integral over k, in (54) is

~ K
I (vks ) =f dk, exp[iR( — k, cosa
-K

+K*—kisina)lF(k, k), (55

where K ? = «g — k 1. Using the method of stationary phase,
the asymptotic form of this integral for large R is

I} (rky,w)= (27K /R)"? exp(iKR — in/4)

XsinaF( — K cos a,k, ). (56)

Integrating the above function over k, with limits
— ko <k, < + K, and using once again the method of sta-
tionary phase, provides the following asymptotic expression
for I > (r,w) at large r:

I>(rw)=(2mxy/r)expligr — in/2)

X cos OF( — «, sin 8 cos &, — x,, sin @sin &),
(57)
where @ and & are polar angles of the position vector r in the
far field in spherical coordinates with 8 measured from the z
axis and ¢ measured from the x axis. Thus the explicit form
of the far-field acoustic pressure for large positive z, due to
the monopole, is '

P2 (rbibw) = — Q(w)(x/2r)
xexp[l'(lfor+x,\/l —sin? 0 k) | s 8
oxcos@ +yJ1 —x2sin’ 6

(58)

The monopole contribution g (r.@) to the total pres-
sure p(r,@) in the coating (z < 0) is, according to Eq. (22),

. a(&’) (J- 2 e—tls'x—rllx+hl
sy = 2@ ([gye " =
Pa(re (2m)? 27,

_J-dlk e—h—r.(lxl+h) a.yo_rl).
27 oY + N
(59)

In spherical coordinates with the axis in the negative z
direction the first integral in (59) is calculated exactly as

ey ¢ — tgl

[

IE(r, = -0 —_—,
©(rw) Q) Amir — 1y

(60)
where r, is the location of the center of the inhomogeneity.
Therefore, as expected, we get the expression for the direct
monopole radiation. The second integral in (59) has the fol-
lowing asymptotic form for large negative values of z:

el o[RBT 4+ icos 6,
4rlr +%o| g[S, — & —icosf,
(61)

where 0, is the angle measured between the negative z axis
and the vector (r + r, ) giving location r with respect to the
image of ry; i.e.,, —r, = (0,0,4). Thus the far-field acoustic
pressure in the coating due to the monopole is

15 (rw) =0(w)




~ "y = el )8 - ol
P:.(r.O, b)) = — Q(w) (e e
4T \|r—ro| (r+ro|
y gysin” 6, — & +icos b, ) (62)
ay/sin* 6, —«* —icos 6,

Formulas (37), (40), (41), (58), and (62) constitute a
complete solution to the problem of the far-field acoustic
radiation produced by scattering of the boundary layer pres-
sures by a localized inhomogeneity in the coating.

For certain values of the nondimensional parameters,
these expressions for the far-field acoustic pressure have a
simple physical interpretation. One case of interest is the

*situation when« = ¢, /¢, €1 and o= 1, corresponding to the
flow of water (c,=1500 m/s) over vuicanized rubber
(¢, =50 m/s according to Resnick and Halliday*® ). In this
limit, sound scattered in the upper medium has dipole char-
acteristics arising from the interaction between the mono-
pole and its image:

pL(rbbw)= — Q(w)( ) (ﬁ-) R s B,
2mr) \¢g

(63)

The leading order cancelation between the monopole and its
image comes about because the surface reflection coefficient
is — 1 in this limit.
In the same limit, the sound scattered in the lower medi-
~
_Qw)

um is
(eix.lr—rol
47 \|r—r1y]

mir+vol sin 6, + icos 8
e in 6, +1 .)' (64)
|r 4+ 1| sin @, —icosé,

pi(rb, dw) =

For small angles 8, the last equation gives monopole
radiation

U114

P (r6, =04,0) = — Q(a,)(_l_) &
277,

whereas for directions almost tangent to the interface one
gets from (64) dipole radiation:
P,.(r, = ,¢,w)~ - Q(w)( m) (x,h)e"" cos §,.
(66)

Note that the ratio of intensities of scattered sound in direc-
tions normal to the interface is

(1/poco) 1P|

(65)

=<, (67)
(1/py¢, )|Pm|2
and for directions tangent to the interface is
>(2

(Upien sl ~ €

In the last equation, both x and € are small and their
ratio will depend on the exact values of these quantities.
However, for a typical value x =0.05 at the physical condi-
tions in mind, the above ratio can be controlled only by
changing ¢, i.e., by adjusting the distance A of the inhomoge-
neity from the interface. Assuming that A<5, where & is the

boundary layer thickness, which at typical speeds U, =10
m/s and Reynolds numbers Re; = U,8/v=10* s less than
1 mm, the typical value of € = hw/¢, for acoustic frequen-
cies is of the order 1. The distance 4 cannot be less than the
radius a of the inhomogeneity. Assuming that a is no less
than 0.16, the minimum value of € is about 0.1. Thus the
maximum value of the ratio (68) is about 0.01 and we may
conclude that, in general. for the flow of water over such a
rubberlike compliant plate, the intensity of sound scattered
by the inhomogeneity into the fluid is at least two orders of
magnitude smaller than the intensity of sound scattered into
the compliant medium. However, it should be noted that
often for other rubberlike materials the longitudinal-wave
speed is comparable to the sound speed in water and, conse-
quently, the above conclusions will not apply to such coat-

ings.

VI.COMPARISON WITH STATISTICALLY STATIONARY
AND HOMOGENEOUS BOUNDARY LAYER FORCING

Localized high-pressure bursts occur in turbulent
boundary layers randomly in space and time, and have dif-
ferent amplitudes and durations. Thus, in practical situa-
tions, boundary layer forcing must be treated statistically. In
this section, we compare the scattered sound produced by
statistically stationary and homogeneous boundary layer
forcing with sound produced by a single, deterministic pres-
sure pulse.

The acoustic intensity averaged over the turbulence en-
semble is

I(r,0) =— <p2(r,,z)>

P

=p_cﬂffdwdm B(r@)p* (r,@')
1€t T

Xe~ e =0, (69)

where index / serves to distinguish between the upper and the
lower medium. According to (53) and (59)

B(rw)p*(r,0"))
=G, (r,@)G T (r, & )(Q(w)Q‘(w », (70)
where G, (r,,0), [ = 0,1, denote deterministic functions of r
and w that multiply Q(@) in (53) and (59). Using formula
(34) for Q(w), expressed in terms of the Fourier transform
Py (k,w) of the rigid wall pressure, the last equation becomes
(B(r,@)p*(r,0"))
.
(o+1)?

Xffdzk d*k'(Py (kw)PS(K.w')).

2
‘ G (r,0)G?(r,w")

m/a + Iq (@)
(m
If the turbulence is stationary in time and homogeneous in
horizontal planes paraliel to the interface, then
(P (k)P (K@)

= (27)’6(k — k')6(w — @')S,( — k, — ), (72)

where S, (k.w) is the wave-number-frequency surface pres-
sure power spectral density. Defining the frequency spec-
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trum S, (r,,@) of the acoustic intensity at a point r, resulting
from the statistical forcing such that

1,(['/) =J‘ dws,(l’,,w), (73)

taking the complex conjugate of (72) and using the previous
formulas, we get
27 s
pic, (@+ 1)

G',(r,,a)) ll

S, (rw) =
m/a + IR ((l))

xdeke-Ms,(k,m). (74)
Note that for the stationary forcing the acoustic intensity ata
“point r does not depend on time.

For a deterministic pressure pulse of finite duration, we
introduce the sound intensity averaged over time
T 2 r,,t

L,(r) =—1-f Prallln
T Jo Pic
where T is the duration of the pulse which started at time
t = 0. The intensity (75) is rewritten using Parseval’s equa-
lity:

(75)

1
27Tpc,

_ 1 a

27Tpic, (o + 1)}

XJ. « wl G[(f,,(l))
—w w/a + Iz (@)

Id(r,) =

J. dwlp(r,w)|?

-

2
s (@) 2. (76)

Therefore, the appropriate frequency spectrum of a deter-
ministic pressure pulse to be used for comparison with the
frequency spectrum (74) of statistical forcing is

J

K}exp( ~2/KT +K})

G (r.w)
7/a + Iz (w)

1 o

S,(row)=
o 27Tpic;, (o + 1)

()

(m

The main quantity of interest is the ratio of (77) and (74)
calculated at the same point r:

_Sarw) 1 (o)

R(w) = = - 78
S.(rw) Q27)'T [g(w) 78

where
I (@) =fd2ke':“”Sp(k,w). (79)

The integral /,(w) has already been calculated in the
previous section for four different models of a pressure pulse.
The integral /5 () will be calculated using a phenomenolog-
ical representation of S, (k,w) proposed by Chase,’

o — U.k, )2

S, (k) = (27)°Cpautk? [(
Hu,

) 2 1 1-32
+ (ki +kD)+ W} .
In the above equation, the nondimensional constants are
b=0.75, C,, =0.1553, and H = 3. There is an additional
factor (27)° in (80) as compared with Chase’ resulting
from different definitions of Fourier transforms. Chase’s
model takes into account the presence of strong pressure
fluctuations in turbulent boundary layers, whose determin-
istic models were discussed in the Sec. IV. Since high-pres-
sure regions are advected in the mean stream direction with
the convection velocity U,, the function S, (k,w) has a
strong maximum in the vicinity of k, =@/ U, k, =0. Repre-
sentation (80) is valid for k, > w/c,.
Using (80), the integral (79) can be written as follows:

(80)

Is(w) = (27)*C,piul de, dK,

where K, = hk,, K, = hk, are the nondimensional wave
numbers. The above integral has been computed numerical-
ly for & = § and a typical value of the ratio U_/u, = 20, with
the results of the calculations shown in Fig. 8. The curve
peaks in the range of convective frequencies wh /U, = 1. In
contradistinction to the case of a positive deterministic pres-
sure pulse, it is about ome order of magnitude less at
wh /U, = 0 than its peak value at wk /U, = 1. This feature
is similar to the low-frequency behavior of the zero net force
model (51) satisfying the Kraichnan-Phillips condition.
This suggests that the low-frequency behavior of (31) may
be explained by the presence of cancellation effects among
positive and negative pressure pulses accounted for in the
statistical description but neglected in the strictly positive
pulse models.

The ratio (78) for all four models of the pressure pulse is
plotted in Fig. 9. Expression (46) was used for the Duncan
model (44) and the zero net force model (51). Equation
(48) was used for the numerical simulation model. In the

14

[(l/H’)(U,,/u,)z(wh/Ut -—Kl)2+ (Kf +K§) + (h/M)I]S/f’

(81

—

expression (43) for the concentrated force model, the ampli-
tude P, was set to 7d 2P, with parameters d and P, and the
duration T of the pulse taken from the Duncan model. In ali
cases, the ratio (78) has a local maximum for wA /U, =0,
followed by a gradual decrease by about 10 dB in the range
0<wh /U_< 1. Subsequently, the curves begin to increase be-
fore reaching a plateau for wh /U, > 10. The exception is the
curve for the concentrated force model, which decreases rap-
idy for @h/U,>10. Note that the range
wh /U, =wb/U_ 55 (for the typical values used here, §=1
mm and U, =~10 m/s), corresponds to important acoustic
frequencies f = w/(27) > 10* Hz.

The curve for the Duncan model follows rather closely
the curve for the model obtained from the direct numerical
simulations; however, its level is consistently about 20 dB
higher. The variations in the range 10-20dB for the intensity
of sound produced by the individual pressure puises are ex-
pected because of variations in their strength and size. For
instance, an increase in the linear dimensions of the pressure
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F1G. 8. Frequency dependence of the monopole intensity /5 () for the sta-
tionary turbulent bouadary layer model, on log-linear and log-log scales.

footprint by a factor of 3 would increase the intensity level by
close to 10 dB. Results presented in Fig. 4 indicate that
pulses significantly larger than the one investigated in this
paper exist in the boundary layer. Therefore, it could be ex-
pected that the intensity levels associated with these pulses
will be comparabie or greater than for the Duncan model.

In the range of acoustic frequencies wh /U, > 10 the in-
tensity of radiation induced by the zero net force model (51)
is about 10 dB greater than the averaged acoustic intensity
calculated for a stationary turbulent boundary layer forcing.
Itis, however, less by over 20 dB than the intensity estimated
for a purely positive pressure model of the advected vortex
(44) (the Duncan model). Acoustic intensity in the range of
frequencies wh /U_ <S5 is substantially lower (20-40 dB) for
this pressure model than for the boundary layer forcing. We
may conclude that enforcing the Kraichnan-Phillips condi-
tion for the high-amplitude pressure events by surrounding
positive peaks by negative pressure regions will result in de-
creased levels of radiation as compared with the case of
strictly positive ~ressure distributions. Nevertheless, these
decreased intensities are still larger in the range of acoustic
frequencies than the corresponding intensities induced by
the boundary layer forcing.

The most striking feature of these results are consistent-
ly higher levels of sound generated in the range of acoustic
frequencies wh /U, > 10 by the individual pressure pulses
than by the boundary layer. This feature is not unexpected.
Indeed, the average sound intensity of the burst (75) is cal-
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FIG. 9. Sound intensities for the concentrated force model (dotted line),
the Duncan model (dashed line), the zero net force model (dashed-dotted

" line), and the numerical simulation model (solid line). Ail curves normai-

ized by the sound intensity of the stationary turbulent boundary layer mod-
el.

culated by averaging over only the small period of time in
which a burst is active. During this time the pressure is much
higher than the pressure associated with low-level activity
preceding and following the bursting event. Since in the clas-
sical statistical description (e.g., Chase’ ) the averaging time
covers both bursts and the low-level activity periods, the
result of the averaging is necessarily less than in the previous
case. In order to recover the classical estimate of radiated
sound, we should increase the averaging period Tin (75) to
the mean time between bursts. According to Karangelen et
al.,' the bursting events with large amplitudes (34 p__,)
occur about 1%-5% of the recording time. This implies that

" the ratio (78) plotted in Fig. 9 would be 10 to 20 dB 'ower if

the averaging period 7" were equal to the time between bursts
rather than the duration of a single burst. Such a change
would bring the results obtained by both approaches into
much closer agreement for frequencies wh /U, > 10, indicat-
ing that there is no fundamental contradiction between
them. However, it must be stressed that that a recorded
acoustic signal would reflect the wall pressure evolution ex-
hibiting periods of radiation with intensities substantially
greater than could be predicted by the statistical approach.

In the range wh /U, < 10, radiation levels generated by
bursts may be either lower or higher, depending on the mod-
¢l employed, than statistical estimates. However, in all cases
considered, the ratio (78) has a minimum in this range im-
plying a relatively lower content of the low-frequency modes
in ti.e radiation induced by the deterministic bursts than by
the stationary turbulent boundary layer.
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Vil. CONCLUSIONS

We have investigated the process of sound generation by
a deterministic pressure pulse in a fluid flowing over a com-
pliant coating containing a small inhomogeneity.

To leading order, the void inhomogeneity can be treated
as a monopole source, its strength determined by the detailed
form of the pressure at the interface between the fluid and
the coating. Four different models of the pressure pulse were
employed to specify the monopole strength. For three of
these models, a concentrated force advected with constant
velocity U, the pressure field of an advected vortex, and the
wall pressure of a turbulent burst, pressure values are strictly
positive. In all these three cases. the frequency dependence of

“the monopole strength exhibits the same generic behavior: a
large, almost constant plateau in the range of subconvective
frequencies wh /U, <1, followed by a fairly rapid decrease in
the range 1<wh /U.. The remaining model satisfies the
K raichnan-Phillips condition and the associated monopole
strength differs from those computed for the other three
models only by exhibiting a maximum at a finite, instead of
zero, frequency.

The far-field acoustic pressure in the fluid and in the
coating due to the inhomogeneity has been calculated. In the
interesting case of water flow over a particular rubberlike
coating, the sound has dipole character in the fluid, whereas
in the coating there is a gradual change from monopole to
dipole radiation when the radiation direction changes from
the normal to the tangent to the interface. Also, in this case,
the coating always captures most of the sound energy scat-
tered by the inhomogeneity.

A comparison was made between the sound generated
by a single pressure pulse and the sound generated by the
scattering of the statistically stationary turbulent boundary
layer pressures by the inhomogeneity. Only those events in

the boundary layer that contribute to the convective peak in’
the wall pressure spectrum were taken into account. For the

particular set of the parameters considered in this paper, in
the range of high acoustic frequencies, the average intensity
of the radiation induced by the individual pressure pulses
can exceed the averaged intensity of the sound induced by
the turbulent boundary layer by 10-40 dB. It is thus expect-
ed that the presence of deterministic pressure pulses in the
turbulent boundary layer will result in bursts of acoustic ra-
diation with the intensities substantially greater than those
predicted by the statistical approach.
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TRANSIENT SCATTERING OF ELASTIC WAVES BY
DIPPING LAYERS OF ARBITRARY SHAPE.
PART 1: ANTIPLANE STRAIN MODEL

HOSSEIN ESHRAGH! and MARUAN DRAVINSKI
Department of Mechamical Engineering, University of Southern California, Los Angeles. California 90089-1453. U.S.A.

SUMMARY

Scattering of elastic waves by two dimensional multilayered dipping sediments of arbitrary shape embedded in an elastic
half-space is investigated by using a boundary method. The displacement field is evaluated throughout the elastic media
for both steady stale and transient incident SH waves. The unknown scattered field is expressed in terms of wave
functions which satisfy the equation of motion, traction-free boundary condition and appropriate radiation conditions.
The transient response is constructed from the steady state solution by using the fast Fourier transform technique.

The numerical results presented demonstrate that scattering of waves by subsurface irreguiarities may cause locally
very large amplification of surface ground motion. The motion can be affected greatly by the scattered surface waves in
the sediments. The results clearly indicate that the surface ground motion depends upon 2 number of parameters present
in the problem. such as frequency and the angle of incidence of the incoming wave, impedance contrast between the layers
and location of the observation point.

INTRODUCTION

Damage analysis after large earthquakes often shows that strong ground motion can be highly localized. For
example, during the Michoacon, Mexico earthquake of 1985, great damage occurred to the structures atop
the alluvium of the Mexico City sedimentary basin while the damage to the buildings atop the base rocks at
the outskirts of the basin was considerably smaller.! If one takes into account that most of the damage
occurred in Mexico City. which is more than 350 km away from the earthquake’s epicentre, the role of the site
effect in the amplification of strong ground motion appears to be of considerable importance to seismologists
and engineers. During the Lima, Peru earthquake of November 9, 1974, ground motion accelerograms
recorded at two sites with nearly the same epicentral distance display pronounced dissimilarities.? The first
site (Instituto Geofisico del Peru) in central Lima, which is located atop weakly horizontally varying
subsurface structure, experienced only minor shaking. The second site, atop the La Molina sediment-filied
valley. was subjected to severe shaking during the same earthquake. This phenomenon was observed during
previous carthquakes as well.? Similarly, during the Niigata, Japan earthquake of 1964, severe damage
occurred to the buildings within Niigata city located atop the deepest part of a sedimentary basin while the
shaking at the rock sites was considerably smaller.> From all these examples it is evident that there is a need
to explain in detail how the site effects influence the ground motion during an earthquake. In order to explore
this subject further, two models for scattering of elastic waves by subsurface irregularities are considered: An
antiplane strain model is presented in this paper and a plane strain one in the companion paper.

The site amplification phenomena have been the subject of several theoretical studies in the past.*~'° Field
measurements by Tucker and King!! and King and Tucker’? show specific resonance patterns of the ground
surface caused by the presence of sediments. Bard and Bouchon'? studied these resonance effects extensively
for simple alluvial valleys. Dravjnski'* and Dravinski and Mossessian'? extended the analysis to valleys with
multipie dipping layers of arbitrary shape. Still, investigation of local amplification of ground motion is
confronted with several major difficuities. Some of these are (i) lack of data for detailed modelling and
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implementation of realistic soil properties and geometry of the actual alluvial valleys. (ii) problems associated
with large characteristic length of the sedimentary basins and (iii) experimental verification of the results.

Modelling half-space problems with irregular geometry of the scatterers requires application of various
numerical techniques. There are basically two numerical approaches: (i) approximate methods and (ii) exact
methods.

A typical representative of the approximate technique is the ray method. This method is based on
asymptotic techniques in approximation of the wave field.!S It has been successfully applied in many
seismological studies. - ! This technique is suitable for caiculation of response at high frequencies. Recently,
Moczo et al.'? extended the ray method to include moderate frequencies as well.

The exact numerical techniques such as finite element, finite difference and boundary integral equation
(BIE) methods are suitable for calculation of low frequency response. These problems are considered in the
present study.

Modelling the scattering of seismic waves by realistic subsurface irregularities using standard numerical
methods, finite elements and finite differences appears to be ineffective for geophysical problems. The
required discretization of the entire solution domain of the model leads to a vast computational grid for
problems with large characteristic length.?° In addition, finite element and finite difference methods do not
completely satisfy the radiation condition at infinity.3!

Boundary integral equation (BIE) methods formulate the problem in terms of boundary values and
possibly internal sources.??-?3 In this approach, the radiation condition at infinity is satisfied exactly.
Discretization may be applied to the boundary of the scatterers only. This reduces greatly the number of
unknown variables in the discretization procedure. Still, use of the BIE methods may require an unacceptable
amount of computation because these methods require evaluation of the corresponding Green functions.
Calculation of these functions often requires a large amount of computational effort.2* Consequently, the
BIE methods appear less cfficient for transient problems with complex geometry.

[n general, the BIE methods are not suitable for analysing inhomogeneous media. On the other hand, the
finite element and finite difference methods are very versatile in handling a medium with varying material
properties.2® This prompted development of the so-called hybrid methods. Hybrid methods combine, say,
finite elements with the BIE methods. They are good alternatives for reducing the shortcomings of both of
these methods. The advantage of such an approach is that it utilizes the versatility of the finite clement
method for detailed modeiling of the near fieid and the effectiveness of the BIE methods in the far field.?! Still,
these hybrid techniques require evaluation of the Green functions. In order to avoid the use of the Green
functions, Shah er al.?* proposed another hybrid method which combines the finite element method with the
wave expansion technique. The interior region is modelled by the finite elements and the wave function
expansion is used in the exterior unbounded medium.

Most of the papers cited so far dealt with steady state problems. For solution of transient problems using
the exact methods there are basically two formulations: (i) direct methods and (ii) indirect methods.

In direct methods, the solution to scattering problems is formulated as a function of space and time. The
main difficulty with these methods has been the accumulation of errors with increase of time.?® Smith?° used
the finite element approach and Boore et al.® used the finite difference technique to solve the antiplane strain
problem directly in- the time domain.

For indirec: methods. the transient response is obtained from the steady state solution through use of the
Fourier or the Laplace transforms. Niwa et al.?” used the Fourier transform technique and the BIE approach
for calculation of transient response for completely embedded irregularities subjected to incident P and SV
waves. Bard and Bouchon® %! used the Fourier transform technique (o extend the Aki-Larner method to
transient analysis of alluvial valleys for antiplane and plane strain models. Still, at the present time the
transient solutions for scattering of elastic waves by general three dimensional irregularities have not been
fully devefoped. The main reason for this is the prohibitive amount of computation required for solving the
problems of interest in strong ground motion seismology and earthquake engineering. Thus, it is necessary to
develop a method which would reduce the required computational effort.

For that reason, another type of the boundary method is investigated in the present paper. The method
utilizes the wave function expansion technique. This approach originates in the works of Herrera and




TRANSIENT SCATTERING OF ELASTIC WAVES: | 399

Sabina?® and Herrera.?® The method has the advantage of not requiring evaluation of the Green functions.
These wave functions in general do not satisfy the traction-free boundary conditions on the surface of the
half-space and therefore the boundary conditions must be imposed locally. Sanchez-Sesma et al.%-*! and
Moeen-Vaziri®? used this approach to solve the scattering of SH. P, SV and Rayleigh waves for two
dimensional problems. Dravinski et al.?* used a similar wave expansion technique to study the response of an
alluvial valley subjected to an incident plane harmonic SH wave.

The purpose of the present study is first to extend this approach to problems involving diffraction of plane
SH waves by multiple dipping layers of arbitrary shape embedded within an elastic half-space and to
transient results. In the companion paper** the antiplane strain model is generalized to the plane strain one
to include incident P, SV and Rayleigh waves.

STATEMENT OF THE PROBLEM

The geometry of the problem is depicted by Figure 1. The problem model consists of an elastic half-space
with a finite number of elastic dipping layers of arbitrary shape. The layer interfaces are considered to be
smooth, with no sharp corners. Throughout the paper the following conventions are understood. Subscript j
corresponds to either layer domains D;(j =0, 1, ..., R)orto theinterfaces C;(j = 1, . .., R). Domain D,
denotes the half-space layer while C; denotes the interface between the half-space and the first layer, etc.
Summation over repeated indices is understood. Underlined indices indicate that the summation is being
suppressed. Material of the media is assumed to be linearly elastic, homogeneous and isotropic. The half-
space is subjected to an incident plane SH wave. Therefore, the two dimensional antiplane strain model is
considered in this paper.

For each domain of this model the steady state equation of motion reduces to a single scalar wave
equation3®

(V2 + k)wi(x,0) =0, j=0,1,...,R ()
V2= 32/0x? + 3/3y*, x =(x,))

where w; is the only non-zero component of the displacement field of the jth layer acting along the z-axis, x is
a position vector, w is the circular frequency and k,; denotes the shear wavenumber. The stress field is specified
by

Oppj = f;0w/0x (2a)

a'”jsu‘,aw/ay, j=0,1,...,R (2b)

where u; is the shear modulus of the jth layer. The stress-free boundary conditions along the surface of the
half-space can be written as
Op:(X, @) = 0, y=0 (3a)

Perfect bonding along the layer interfaces requires continuity of displacement and traction-fields according
to

Wf-l(xv w) = w; (X,w) (3b)
Bi- 10w/ (X, @)/0n = p,0w; (X, w)/on xe€C), j=1,...,R (3¢)
where u,0w,/0n is a o,,; component of the stress tensor and n, is the outward unit normal on interface C,.
The + and — supercripts denote that the interface is being approached from the outside and the inside,
respectively (see Figure 1).
The incident SH wave is assumed to be of the form

w* = exp { — i(koxsin 8y — kgycosf, — wt)} @)

where 8, is the angle of incidence. This completes the statement of the problem. The steady state solution of
the problem is considered next.




400 H. ESHRAGHI AND M. DRAVINSKI -

2L

=g

X

Figure 1. Problem model

STEADY STATE SOLUTION

As the incident wave strikes the interface C, , it is partially reflected back into the haif-space D, and partially
transmitted into layer D,. This process continues from one layer to another as the waves propagate
throughout the layered media. Consequently, the wave field in the half-space consists of the free field and the

scattered field, while the wave field inside each dipping layer consists of the scattered wave field only. The
displacement field can be written in the following form:

Wo’w""'w’n' xepo (Sa)
w;=wj, xeD;, j=1,...,R (5b)

where the superscripts s and ff denote the scattered and the free field, respectively. The scattered wave field in
this model can be expressed as a linear combination of the wave functions

wh = ay, H2) (ko r) cos (2ml)

+ 8y HE, ((kor)sin(2m + 1)0, xeD, (6a)
W} = by HD(k;r) cos (2mB) '

+ C2n HYL(k,r) cos (2mf)

+bypy (HE, (kr)sin(2m + 1)6

+ Camer Ha o (K;r)sin(2m +1)0

j=1,...,R~1, xeD, (6b)
Wi = dpJ1u(ker)cos(2mb)

+dims 1 J2ms 1 (ker)sin(2m + 1)6

x€Dy, m=0,1,2,.... M (6¢c)

where r and 9 are the polar coordinates defined in Figure 1, a, b, ¢ and d are unknown coefficients, M is the
order of approximation, H')' and H'?' correspond to Hankel functions of the first and second kind,
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respectively, and J,, denotes a Bessel function of the first kind.>® As indicated earlier, summation over
repeated indices is understood. The wave functions in equations (6a—¢) are solutions of the equation of
motion [equation (1)] and they satisfy the Sommerfeld radiation condition at infinity as well as the traction-
free boundary condition along the surface of the half-space. It is interesting to observe that the scattered wave
field within the half-space is chosen to consist of the outgoing waves only, while the waves within the dipping
layers D, — D, -, incorporate both the incoming and outgoing waves. The scattered wave field within the
innermost layer D, consists of the standing waves only.

At this point more about the nature of the wave functions used to formulate the scattered waves should be
stated. These functions belong to a class of functions known as the c-complete functions. The theory of these
functions has been developed by Herrera and Sabina?® and Herrera?® using algebraic theory. The concept of
c-completeness allows constructing systems of solutions which are complete with respect to general
boundary values independently of the specific region of consideration.?! Sanchez-Sesma et al.3° used this
approach to study diffraction of planc SH waves by subsurface irregularities. Existence and uniqueness of the
c-complete functions for other models is still the subject of ongoing research in algebraic theory. Detailed
analysis of these theories is beyond the scope of this paper. For further study of this subject the reader is
referred to Herrera.??

Once the scattered wave field is expressed as a series of the wave functions, it is necessary to determine the
unknown expansion coefficients in these series. Substitution of the scattered wave field [equations (6a—c)]
into the total displacement field [equatiozs (5a, b)] and then into the continuity conditions [equations
(3b, )] at N; points along the layer interfaces C, leads to a system of linear equations of the form

Ge=f ™M

where vector ¢ contains the unknown expansion coefficients, vector f corresponds to the free field displace-
ment and stress fields along the layer interfaces, and matrix G contains the wave functions and their normal
derivatives. The size of matrix G is (S x K), where S > K in order to solve equation (7) in the least-squares
sense.3” Once the expansion coefficients are known, the displacement and stress fields can be evaluated
throughout the elastic medium. This concludes the steady state analysis for the displacement field. The
corresponding transient problem is considered next.

TRANSIENT SOLUTION

To find a transient response of an elastic medium due to an incident wave signal f(x, ¢) this function must be
broken into corresponding simple harmonic components by means of the Fourier integrai®®

f(x,1)= 1/(21:)-[ F(x, w)e™ do @)

where F (x, @) is the temporal Fourier transform of f(x, t). Function f is assumed to be a casual function. A
plane SH wave, propagating in the direction of unit vector n with phase velocity ¢ can be described by

e (x,t) =a®f[t —n-(x — x4)/c] )
where
B (X — Xo) = (X — x4)8in 0y — (y — yo)cos b,

Here, 8, is the angle of incidence, x, denotes an arbitrary reference point at time ¢ = 0 [see Figure (1)], and
u® = (0, 0, 1) is a unit vector which represents direction of motion. For plane shear waves u®-a = 0. If the
incident wave of the form 6°exp (iw(¢ — x -n/c)) results in the response of the half-space ° y(x, w)exp(iwt),
it is easy to show that transient response u(x, t) of the half-space due to an arbitrary plane SH wave input
u*(x, t), specified by equation (9), is given by

a(x. 1) = 1/(27:)[” Ulx. 0)e* do (a
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where
U(x.w) = z(x. w)explixg-nw c)F (w) (12)

The result specified by equation (11) is exactly the inverse Fourier transform of U(x, w).

An efficient way for numerical calculaton of equation (11) is by means of the fast Fourier transform (FFT).
There are several important parameters which are required in this technique, such as sampling time interval @
At, cut-off frequency w, and number of samples P. The sampling time interval is determined according to
Reference 39 as At = 1/(2fuax)» Where £, corresponds to the maximum frequency. These parameters are
mentioned here only for the sake of completeness, since they must be specified for the numerical evaluation of
the results, which is considered next.

®
NUMERICAL RESULTS

Steady state response

To assess the numerical accuracy of the proposed method, a few problems with known solutions are
considered next. First, diffraction of a plane harmonic SH wave by a stack of semi-elliptical dipping layers
embedded in a half-space is investigated. For one dipping layer the resuits are compared with those of Wong ®
and Trifunac.® For two and three dipping layers the results are compared with those of Dravinski.'* Before
proceeding with a comparison of the results a few conventions regarding the numerical calculations are
introduced. All spatial variables are normalized with respect to the half-width of the innermost dipping layer.
The shear modulus and shear wave speed for the material of the half-space are assumed to be unity, and a
dimensionless frequency Q is introduced as the ratio of the total width of the outermost dipping layer to the
wavelength of the incident wave (Q = 2L/A", see Figure 1). @

For one dipping layer subjected to an incident plane SH wave the corresponding results are shown by
Figure 2. In this figure the amplitude and the phase of surface displacement are presented for four angles of
incidence. These results are in complete agreement with those of Wong and Trifunac ®

Surface displacement results for two and three dipping layers dispiayed by Figures 3-6 are in excellent
agreement with those of Dravinski.!* Excellent agreement between the results of Dravinski!* and this study
is obtained for different frequencies, ratios of the principal axis and angles of incidence as well. For the sake of @
reducing the number of figures these additional comparisons are omitted in this paper.

At this point it is of interest to elaborate further about some numerical aspects of the solution. It is found
that, in solving the steady state problem for low and moderate frequencies, only a few expansion terms [ M in
equations (6a—c)] and observation points [ N, defined in the paragraph preceding equation (7)] are needed.
Evaluation of these wave functions numerically is very fast. For higher frequencies, say Q > 2, the required
number of expansion terms and observation points needed for convergence of the displacement field @
increases substantially. This resulits in 2 more extensive computation. However, even for high frequencies the
evaluation of wave functions is still very fast. What makes the computation expensive is the inversion of
relatively large matrices in solving the least-squares problem [see equation (7)]. It was observed that the
method converges faster for deeper valleys than for the shallow ones. The following criterion has been used to
establish the convergence of the results: as the number of expansion terms and observation points increases
the results are accepted as the final ones if the difference between two successive calculations is sufficiently @
smail.

Transient response

This section deals with the transient response of an alluvial valley embedded in an elastic half-space when
subjected to an incident plane SH wave. Two types of incident signal are considered: hall-sine and Ricker
wavelet. The half-sine wavelet is of the form @

_sin(pz). O<t<T

fiy=y t>T

(13)
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Figure 2. Ampiitude and phase of surface dispiacement spectra for four angles of incidence of a plane harmonic SH wave incident upon

a semi-ciliptical alluvial valley. Dimensioniess frequency Q = 1-5. Unless stated differently, the ing parameters are assumed:

Ho = By =1,y =167, B, = 05, A,/ A, = 07 (ratio of the minor and major axis of the eilipse), M = 1S, N = 40 (M and N correspond
to the number of the expansion and nodal points. respectively)

where ¢ corresponds to time, T is the time period of the signal and p is given.
The Ricker wavelet is defined to be the same one used by Bard and Bouchon:®
f(t)= (Jn/Z)(a ~05e" a=(x(t-— t,)/t,)z (149
where ¢, corresponds to the peak amplitude in the time domain and t, corresponds to angular frequency
w,(= 2n/t,) which is associated with the peak amplitude in the Fourier transform domain.
As a test case, a problem previously studied by Bard and Bouchon® is reconsidered. The input wave is
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Figure 3. Amplitude and phase of surface displacement spectra for 2 verticaily incident SH wave for two semi-elliptical dipping layers.
Q =05, A;/A, = 07 (for both interfaces), 4, = 06 5, =08, 1, =03, 5, =06 M =8 N =17

assumed to be a vertically propagating SH Ricker wavelet, incident upon an interface defined by

’(h/2)(l +cosrx/D), -D<x<D
0, x<—-Dorx>D

The results of this comparison are displayed by Figure 7. Apparently, the present results are in good
agreement with those of Bard and Bouchon.®

For a semi-eiliptical dipping layer subjected to an incident SH half-sine wavelet the seismograms along the
surface of the alluvial valley are shown for vertical and grazing incidences by Figures 8 and 9, respectively.
For a vertically incident wave (Figure 8), the surface dispiacement field coasists of signais associated with
direct arrival of the incident wave and disturbances due to scattered surface waves. Three stations on the half-
space (A, B and C) indicate clearly the arrival of the undisturbed incident signal at expected times. However,
the two stations atop the valley (D and E) dispiay a significant amplification of the incident signal (for t < 6).
The amplification is mainly due to interference of the scattered field with the incoming incident signal (this
phenomenon can be aiso observed in the steady state response, as indicated by Figure 2). After the passage of

C.y (15)
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Figure 4. Amplitude and phase of surface displacement spectra for a grazing incident SH wave for two semi-elliptical dipping layers.
Q =05, A,/A, = 07 (for both interfaces), y, = 06, f, = 08, y, =03, f, =06, M =8 N =17

the direct incident signal, the wave field atop of the valley consists mainly of the surface waves which are
generated by the two edges of the valley. These waves interact constructively (destructively) within the valley.
Particularly large amplification can be observed at the centre of the valley at station E (for t>6). After
passing each other, the surface waves strike the opposite edges of the valley, regenerating new surface waves
which partially reflect back into the valley. The initial and reflected surface waves on the half-space are clearly
shown along lines AA and BB of Figure 8. Each one of these lines tracks a particular wave as it moves from
one station to another.

An interesting feature in these results is the arrival of the main disturbance prior to the direct arrival of the
incident signal. This is clearly evident in the case of grazing angle of incidence (Figure 9). For the seismograph
at station C the arrival time of the main disturbance is at time ¢ = 9-3. This is quite different from the expected
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time ¢ = 13, which corresponds to the-direct arrival of the incident signal However, considering that the
wave travelling beneath the valley is scattered by the bedrock, the arrival time ¢ = 9-3 at station C seems quite
reasonable (the minimum arrival time for the same station for a homogeneous half-space is ¢ = 9). The arrival
of the incident signal along the surface of the half-space (indicated by a dashed line in seismograph C) can be
seen clearly at about ¢ = 13.

For the two dipping layer model corresponding surface displacement results are depicted by Figures 10
and 11 (to reduce the number of figures only vertical and grazing angies of incidence are considered). For a
vertically incident wave, for most of the stations away from the centre of the valley, the surface response is
basically caused by direct arrival of the incident signai, and not much of the lateral propagation of the surface
waves can be observed. However, at the ceatre of the valley, the scattered surface waves play a much more
important role. The amplification of scattered surface waves at the centre of the valley for a vertically incident
wavelet was also observed in the simpler one dipping layer model (Figure 8). In particular, for grazing
incidence (Figure 11), the lateral propagation of surface waves is much more significant. This is due to direct
transformation of the obliquely incident SH wave into Love waves. This effect was also observed by Bard and
Bouchon.®

For the three dipping layer model and vertical (grazing) incidence the resuits are shown by Figure 12
(Figure 13). Both figures demonstrate clearly generation and propsgation of the surface waves as observed
along lines AA. The slopes of these lines give the average phase velocity of these surface waves. This velocity is
about 1 in both cases, suggesting propagation of surface waves of the same nature, independent of the angie




407

TRANSIENT SCATTERING OF ELASTIC WAVES: |

2unly Y1 jJo woloq 3y v umoys
218 (3u)] paysep) 0132 0} jEnba ) ) JuOI) IaRM pur sydeISOLINIS JO UOHWIO|
"waqosd ayi Jo £112w0as ay) ,uoydnog pue pieg jo £ B4 JO SN O)
Puodsa103 S1op apym uonediisaauy siy) Jo 1nsas 3y) o) puodsasios souy pios
(Aauanbasy o wo) ¢g.¢ = '@ pue (sjeasaus 3w Fuydwies) 7.9 = 1y (saydwes
J0 1BQNY) 967 = 4 21 (| 4 ]) WIOJSURI] ININO Jsej oy} ul pasn ssajswesed
ML TO="d VIr700 =" 01 =% = ¢ pue p79 - ‘TLO- ‘vgl -
= X 12 pAjen] 31w (] 0) ¥ suohier§ (82 = *1) 7957 = 1 pousad suspseseyd
JO 1apARM 13931 IS 1UIPIOKI LjjRonian v 0) (2.0 Jo Yidap winunxew pue |
Jo nipIm-Jley gum) Lajjea ad£) anisoo ¢ jo asuodsa epns Jussues ] ‘L 0By

4

-~nf5} Mes - -~ gy~ B
Z 1

a

2
- z-

SRS
-

RN ST Ld><* v
L,

6L=NTl=Wro="¢
"10=°1 90="¢ ‘¢Q="" ‘g0 ="¢ ‘9= "' (ss0wpoim yv 09 po="v/'y
0=y ‘sihey Buddip pondip-uae 3054) 20§ JABM }iS  IMOPLM
Suszes® v 10j e210ads Juaepdsip 20v)ns Jo aseyd pue pniydwy 9 21§

2-

- - = » @

Yioe/aseid




408 H. ESHRAGHI AND M. DRAVINSKI
‘ -
A 0 /\\ A — - 8 v v v v - - v t
W ] ]o 60
1
a4
&4 4
8 0 /\ R > an v t
.
‘ -
c 0 A »-‘\\/'_A__ ez - - t
4 A 8
-4 4
‘ -
1 N
D [+] Vo S — v t
.‘ e
4]
-
E ] 1 '/,\ /\’:\ Va\ - - t
j \/’ VA
-4 4

s front
______ R~

Figure 8. Transient surface response of a semi-efliptical dipping layer to a vertically incident SH haif-sine wavelet with a time period of
¥14.Sations Ao Esrelocated st x = — 4 =3, =2 — 1 2nd 0. A,/A, =07, 5, = 0167, 8, = 05, P = 256, At = 025, w, = 4673

of incidence. For grazing incidence (Figure 13), the scattered waves (by the bedrock) reach station G at time
t = 16 prior to the arrival of the direct incident signal which can be detected by a sudden change in the siope
of the seismograph at ¢t = 23-3 (indicated by a dashed line). The minimum arrival time for the same station for
a homogeneous half-space is t=136. Very likely, owing to the much more compiex pattern of the
scattered waves, the arrival of the incident signal is less clearly displayed here than in the simpler
model of a one dipping layer (Figure 9). As expected, for vertical incidence the main disiurbance is basically
dué to the arrival of the direct incident signal (Figure 12).
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Figure 9. Transient surface response of a semi-efliptical dipping layer to a grazing incident SH bali-sine wavelet with & time period of
314.Sutions Ato Carelocated at x = —4,0and 4. A,/A, =07, y, = 0167, B, = 05, P = 256, At = 025, w, = 4673

The geometric complexity of multilayer models precludes more detailed examination of the corresponding
transient responses. Nevertheless, the results presented offer sufficient information for reaching a basic
understanding of the scattering phenomenon by alluviums subjected to incident SH waves. Apparently,
amplification of surface ground motion is very sensitive to the presence of subsurface irregularities, the nature
of the incident wave, impedance contrast between the layers and the location of the observation station. In
addition, surface waves generated by the edges of the {ayer piay a particularly important role in the resulting
motion atop the deeper parts of the sediments.

This concludes the transient analysis of the antiplane strain problem.
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CONCLUSIONS

Amplification of incident plane SH waves by two dimensional dipping layers of arbitrary shape is
investigated by using a boundary method. Both harmonic and transient incident wave fields are considered.

The steady state response for various types of valley is obtained by using a wave function expansion
technique. The continuity conditions are imposed at a number of points along the interfaces. Transient
response is constructed from the steady state solution by using the fast Fourier transform technique. The
results presented indicate that the presence of sediments may change substantially the local amplification of
the strong ground motion. This amplification is very sensitive to the nature of incident wave, type of
subsurface irregularity and the location of the observation station at the surface of the alluvium. It is shown
that surface waves generated by the edges of the layers play a very important role in the resulting
displacement patterns atop the deeper parts of the sediments.
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TRANSIENT SCATTERING OF ELASTIC WAVES BY
DIPPING LAYERS OF ARBITRARY SHAPE.
PART 2: PLANE STRAIN MODEL

HOSSEIN ESHRAGHI AND MARLAN DRAVINSKI
Deparimen: of Mechanical Engineering, Universuty of Southern Califorma. Los Angeies. California 90089-1453, U.S.A.

SUMMARY

Scattering of elastic waves by dipping layers of arbitrary shape embedded within an elastic half-space is investigated for a
plane strain model by using a boundary method. Unknown scattered waves are expressed in the frequency domain in
terms of wave functions which satisfy the equations of motion and appropriate radiation conditions at infinity. The
steady state displacement field is evaluated throughout the elastic medium for different incident waves so that the
continuity conditions along the interfaces between the layers and the traction-free conditions along the surface of the
half-space are satisfied in the least-squares sense. Transient response is constructed from the steady state one through the
Fourier synthesis.

The resuits presented show that scattering of waves by dipping layers may cause locally very large amplification of
surface ground motion. This amplification depends upon the type and frequency of the incident wave, impedance
contrast between the layers, component of displacement which is being observed. location of the observation station and
the geometry of the subsurface irregularity. These results are in agreemes;i with recent experimental observations.

INTRODUCTION

This paper is an extension of the study by Eshraghi and Dravinski' in which scattering of plane SH waves by
dipping layers of arbitrary shape was considered. The present paper extends the analysis to the plane strain
model of the probiem. A detailed literature review of the probiem can be found in the companion paper by
Eshraghi and Dravinski® and it will not be repeated here.

As discussed in the paper dealing with the antiplane strain model,! calculation of strong ground motion
due to subsurface irregularities may require a great amount of computation time. Consequently, this paper
considers a method which appears to be computationally very effective in comparison to the standard
numerical techniques such as finite elements and finite difference. In this method, the unknown scattered
wave field is expressed in terms of the wave functions which satisfy the equations of motion and appropriate
radiation conditions at infinity. However, these functions do not satisfy the stress-free boundary conditions
along the surface of the half-space. This idea originates in works of Herrera and Sabina? and Herrera® and it
has been successfully applied to problems of scattering of elastic waves by Sanchez-Sesma et al.** and
Dravinski e al.$

STATEMENT OF THE PROBLEM

The geometry of the probiem is depicted by Figure 1 of the paper by Eshraghi and Dravinski®. The problem
model consists of an elastic half-space with a finite number of elastic dipping layers of arbitrary shape. The
layer interfaces are considered to be smooth, with no sharp corners. The conventions are the same as in the
paper dealing with the antiplane strain model.! Subscript j corresponds to either layer domains D; (j =0,
l,..., R)orto the interfaces C,(j = 1, ..., R). Domain D, denotes the half-space layer while C, denotes
the interface between the half-space and the first layer. etc. Summation over repeated indices is understood.
Underlined indices indicate that the summation is being suppressed. The material of the media is assumed to

0098-8847/89/030417-18509.00 Received 29 April 1988
& 1989 by John Wiley & Sons. Lid. Revised 16 August 1988
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: linearty elastic, homogeneous and isotropic. The half-space is subjected to an incident P, SV or Rayleigh

ave. In this model the displacement field u = (1, 1,0) is related to the displacement potentials according to’
=V, +Vx(00y,) j=01...,R (1)

here ¢; and ¥, are P and SV wave potentials of the jth layer, respectively. The steady state equations of
otion are specified by

V2 + h,f).p,;(x. w) =0, (2a)
(Vz+kf)|pl(x,w)-0' xa(x,y)eDi' j=0 1,...,R (2b)

ere, h; and k; denote the dilatational and equivoluminal wavenumbers. respectively, of the jth layer. The
rundary conditions on the surface of the half-space are given by

OniiX.w)=0, y=0 (3a)
Oyi(Xx,w) =0, y=0, xeD;, j=01,...,R (3b)
ontinuity conditions along the layer interfaces are assumed to be
U (x, @) = u (x, 0) (4a)
V2 (X, @) = v (x, W) (4b)
Oni-1(X @) = ag,;(x, w) (4c)
Ouj-1(X, 0) = ag;(x,w), x€C;, j=1,2,...,R (4d)

here u; and v, are components of the displacement vector field along the x and y directions, respectively, and
«jand o ; are the components of the stress tensor along interface C; with unit normaia; and tangent vector
, respectively. Incident P and SV waves are assumed to be of the form

@™ = Aexp {—i(hy xsin Oy ~ hyy cos 6, — wt)} (5a)
y'™ = Bexp { —i(ko x sin g — ko y cOs 8, ~ wt) } (5b)

here ¢ and ¢ are P and SV wave potentials, respectively. It is customary to distinguish the angle of
cidence for a P wave from that of SH and SV waves. Therefore, 8, = i corresponds to incident P waves
hile 8, = j corresponds to incident SV waves. The Rayleigh wave is considered to be of the form

®'™ = Aexp(—b,y)exp { —i(kox — wt)} 6a)
¥ = Bexp(—byy)exp(=i(ky X —wr)} (6b)
by = ko[1 = (co/ag)]*?
by = ko[1 ~(co/Bo)? ]!
Ko = WiCq

ere. ¢, is the half-space Rayleigh wave velocity, x, is the corresponding wavenumber, 2, and B, are
ngitudinal and shear velocities, and A and B are known amplitudes. This completes the statement of the
oblem. Soiution of the problem is considered next.

SOLUTION OF THE PROBLEM

; the incident wave strikes the interface C,. it is partially reflected back into the half-space D, and partially
insmitted into layer D,. This process continues from one layer to another as the waves propagate
roughout the layered media. Consequently, the wavefield in the half-space consists of the free field and the
attered field. while the wave field inside each dipping layer consists of the scattered wave field only. The
splacement field can be written in the following form:

o =u'" +u}. xe€D, (7a)
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u=u. xeD,, j=1..., R (Tb)

where u = (1, ), X = (x, y), and the superscripts s and fT denote the scattered field and the free field,
respectively.

The stress and displacement fields in polar coordinates (defined by Figure | of Eshraghi and Dravinski!)
can be expressed in terms of potentials according to

u, = g¢p/dr — 1/roy /60 (8a)
Uy = 1/r 0¢/08 + Oy /or (8b)
G, = AV2¢ + 2u[3*¢/5r* — 6/dr(1/r 04/06)] (8¢c)
Gop = AV30 + 2u[1/r(0¢/dr + | /r 3*¢/06%)
= 1/r(1/r 3y /36 — *y/draf)) (8d)
G = p{2[1/r3*¢/060r — 1/r* 8¢/30]
=1{1/r? 8%/80* — ré/ar(1/row/or]} (8e)

where /. and u are the Lamé constants and the subscript j is suppressed for simplification. The scattered wave
fields are assumed to be of the form

¢% = a,H(hor) cos mb + b, HZ(hor) sin mé (%)
Vo = af H(kor) cos m8 + b H2 (kor) sin mf (9b)
xeD,

@} = cuHP (hyr) cos m + d HS'(h,r) cos mf

+ e HZ'(h,r)sin md + f H{ (h,r) sip mb (5¢)
v} = ca HP'(k,;r) cos m@ + d3 HY(k,r) cos mb

+ e2 H(k,r)sin m6 + fi* HY(k,r) sin m8 (9d)

xeD,, j=12...,R=1

@R = G’ m(hpr) coOs mé + 1, J (hpr)sin mé %e)
Uy = g%J (ker) cos m@ + 13 J, (kgr) sin md (91)

XGDR, mso,l.l..-,M

where a,, to I* are unknown coefficients, M is the order of approximation, J, is a Bessel function, and HY'
and H® are Hankel functions of the first and second kind, respectively.? All the wave functions in equations
(9a-f) are solutions of the equations of motion [equations (2a.b)]. Analogously to the antiplane strain model,
the scattered wave field within the half-space consists of outgoing waves only, thus satisfying the radiation
conditions at infinity. Scattered waves within the layers D, — D, _, incorporate both incoming and outgoing
waves, while the scattered wave field within the inner most layer D, consists of standing waves only. It can bé
seen that the wave functions for the scattered wave field in this modei do not satisfy the stress-free boundary
conditions along the surface of the half-space. These conditions will be imposed locally, as discussed in the
next section.

EVALUATION OF THE EXPANSION COEFFICIENTS

Once the scattered wave field is expressed as a series of the wave functions. it is necessary to determine the
unknown expansion coefficients in these series. First. the scattered wave field [equations (92a-1)] is substi-
tuted into the continuity conditions [equations (4a—d)] at N, points along the layer interfaces C. Then. the
boundary conditions [equations (3a.b)] are imposed locally at L, points along the surface of the half-space.
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This results in a system of linear equations of the form
Ge=f (10)

where vector ¢ contains the unknown expansion coefficients. vector f corresponds to the free fieid
displacement, and stress fields along the layer interfaces and matrix G contains the wave functions and their
normal derivatives. The size of matrix G is (S x K), where S > K is order to soive equation (10) in the least-
squares sense. Once expansion coefficients are known, the displacement and stress fields can be evaluated
throughout the elastic medium according to equations (8a-¢).

This concludes the steady state analysis for the displacement field. Corresponding transient displacements
are evaluated through the Fourter synthesis analogously to the antipiane strain model.' Numerical resuits
are discussed next.

NUMERICAL RESULTS

Steady state response

Response of a canyon and alluvial valleys subjected to incident plane harmonic P, SV and Rayleigh waves
is discussed in this section. As in the case of the antiplane strain model,! the shear wave velocity and the shear
modulus of the half-space are chosen to be equal to unity, and Poisson’s ratio for all the materials is taken to
be 1/3. Spatial variables are normalized with respect to the half-width of the innermost dipping layer. The
dimensionless frequency Q is defined as the ratio of the total width of the outer most dipping layer to the
wavelength of the half-space shear wave.

First, for testing purposes, surface displacement field resuits are compared with the ones obtained in some
carlier studies. For a canyon, the results by Wong,® Dravinski and Mossessian'® and Mossessian and
Dravinski'' are used to test the accuracy of the present method. These studies are referred to as papers [, II,
and III, respectively. For one and two dipping layer models only studies IT and III are applicabie for the
comparison. It shouid be pointed out that, aithough the results of study II are evaluated for small
attenuation, they are still suitabie for testing purposes. Present results inciude also the phase of the surface
displacement field which has not been considered in the previous investigations.

For a semicircular canyon subjected to incident P waves the surface displacement fieids are depicted by
Figures | and 2. It is evident from these figures that the present results are.in compiete agreement with those
obtained previously by other methods.

For a semicircular dipping layer and incident SV wave corresponding resuits are shown by Figures 3 and
4, and for an incident Rayleigh wave by Figure 5. These results are in excellent agreement with the ones
obtained in studies II and [II. The smalil difference from the results of study II could be attributed to the
weakly anelastic nature of the material used in that investigation. Excellent agreement between the resuits
obtained by the present method and the results of studies II and IT1 is obtained for incident P and Rayleigh
waves for a range of different parameters (frequency, angle of incidence, etc.) as well, but the latter are omitted
here for the sake of reducing the number of figures.

The two dipping layer model is constructed by adding one layer to the one dipping layer model. This
produces a more gradual transition from the stiff half-space to the soft top layer. Results pertinent to this
model! are depicted by Figure 6 for a vertically incident P wave. These results are in excellent agreement with
those of papers {1 and [11.

At this point it is of interest to elaborate further some numerical aspects of the solution. The wave
functions used in this study are similar to the ones used in the antiplane strain model.' However, these wave
functions do not satisfy the stress-free surface boundary conditions. These conditions must be imposed
locally at several points placed uniformiy along the surface of the half-space on both sides of the irregularity.
In particular, if the maximum width of the irregularity is denoted by 2L, then these additional points are
located within the interval — 3L < x < JL. Similarly to the antiplane strain model. more observation points
[N,and L, defined in the paragraph prior to equation (10)] and higher order of expansion [M. see equations
(9a-f)] are required at higher frequencies in this model as well. The convergence of the resuits has been
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tablished by observing the stability of the displacement field as the number of expansion terms and
yservation points increases. The numerical resuits are accepted as the final ones if the difference between
ro successive calculations is judged to be sufficiently small

Overall, the aumerical resuits indicate that the proposed method provides an accurate displacement field
r a wide range of parameters present in the problem and that the solution exhibits very fast convergence.

ransient response

Transient surface reponse to an incident P or SV Ricker wavelet is investigated next. For definition of the
icker wavelet used in this study the reader is referred to the paper by Eshraghi and Dravinski.!

First, for testing purposes, the predominant component of the displacement field for a cosine type valley is
aluated for a vertically incident P wave. This problem has been investigated earlier by Bard and
suchon.!? The resuits are shown by Figure 7. Very good agreement between the two methods can be
sserved for all four stations at the surface of the half-space. After this verification of the algorithm for the
aluation of transient response, several additional transient problems are considered as follows.

For a semicircular canyon and vertically incident SV wave the results are presented by Figures 8 and 9. As
jpected, the predominant motion of the valley takes place in the horizontal direction (Figure 8). This
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gure 7. Vertical component of displacement for tra asient surface response of a coune type valley 1o & vertically incident P Ricker
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= 1731 {only for this figure), u, = 002624, 8, = 02, 2, = 04, P = 236, At = 02 w, = "697. Solid lines correspond to this method
while dots correspond to the results of Figure 13 of Bard and Bouchon'?
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component of motion consists of both incident and scattered waves, while the vertical or non-predominant
component of the displacement field (Figure 9) consists of the scattered waves only. In Figure 9 line AA
tracks a particular wave as it moves from station B to station A. The slope of linc AA in Figure 9 gives the
phase velocity of the propagating surface waves slightly less than one, suggesting that these waves are
Rayleigh waves which originate at the edge of the canyon and are travelling along the soil surface. The




426 H. ESHRAGHI AND M. DRAVINSK!
2 4
A
A 0 v v y——— t
30 60
-2
27
B o ~ t
A
4
2
T
c 0 ,‘\A‘ - - —_ . ¢
-
-24
21
D 0 \\'I\ - 4
-2
21
c O - — ’ - t
el =2 <1 0 2 3
24 A
—————— Zwave front
DT at ts=0
2

Figure 9. Vertical component of transient surface response of a semicircular canyon to a vertically incideat SV Ricker wavelst with
characteristic psniod ¢, -3-66(:.-4).S(wonsAwEmloaudux-—i-6.-17.-0-8. ~04and 0. R, = |, P= 256, At = 025,
w, = §-561

N

seismograph at the centre of the canyon shows no vertical disturbance because of the symmetry of the model.
The appearance of the direct incident signal at expected times at each station for the predominant component
of the dispiacement field provides further confidence in the accuracy of the resuits (Figure 8). It is interesting
to observe a delay in wave arrival for the vertical (non-predominant) displacement component (Figure 9) in
comparison to the arrival time of the horizontal displacement component (Figure 8): the scattered field for
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vertical motion consists mainly of the surface waves generated at the edges of the canyon, therefore, an extra
time for their arrival at an observation station must be taken into account.

For the one layer model, the seismographs displayed by Figures 10 to 13 show propagation patterns of the
displacement field for various stations atop of the alluvial valley. Figures 10and 11 correspond to a vertically
incident P wave. The predominant motion takes place in the vertical direction. In that direction, the response
consists of both incident and scattered wave fields, as indicated by Figure 11. Large amplification of the
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Figure 10. Horizontal component of transient surface reponse of a semicircular dipping layer to a vertically incident P Ricker wavelet
with characteristic penod {, = 366 (1, m4). y, =(-167, 3, 0.5, g, @ 1. R, = |, P=256, At =025, w, = 7697. Throughout Figures 10 10
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Figure t1. Vertical component of transient surface response of a ssmicircular dipping layer to s vertically incident P Ricker wavelet with
characteristic period ¢, =366 (t, m4). u=(167, B, =05, 2, = |, R, = |, P=u256, At =025, v, = 7-657

L)

response at the ceatre of the valley is evideat. Figure 10 shows the horizontal component of the scattered
field. Again, the ampilification of surface motion inside the valley is significant. Generation and propagation
of the surface waves at each edge of the vailey are clearly displayed on these figures: thus, the positive slope of
line AA in Figure 10 shows propagation of disturbances in the half-space away from the valley edge, while the
negative slope of line BB indicates wave propagation within the sediments toward the centre of the valley.
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p
Therefore, the edges can be viewed as sources of these surface waves. Similar results are obtained for the
incident SV wave displayed by Figures 12 and 13. As in the case of the incident P wave large amplification of
the surface displacement field is observed within the sediments. The predominant motion takes place in the
horizontal direction, as shown by Figure 12. Figure 13 displays the vertical component of the displacement
field for the same model. It is interesting to observe large ground motion amplification for the vertical
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displacement component at about midpoint between the centre and the edge of the sediment (station D in
Figure 13). For the same station and displacement component this phenomenon can be observed in the
corresponding frequency spectra (see Figure 3. Analogous observations can be made for the horizontal
displacement component. Figure 12 indicates very clearly that the maximum amplification of the surface
ground motion for that component of displacement fieid occurs at the centre of the sediment. The
corresponding frequency spectra (see Figure 3) confirm this result. Similar observations can be made for
other incident waves as well. However, these are omitted in order to reduce the number of figures.

PURN
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For the two layer model and a vertically incident P wave the vertical and horizontal components of the
splacement field are presenied by Figures 14 and 15, respectively. The predominant motion of the valley
igure 14) consists of both incident and scattered waves. Amplification of the incident signal is evident for
e stations inside the valley. Lines AA and BB track two distinct surface waves as they move atop the half-
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ure 14. Vertical component of transient surface response for two semicircular dipping lsyers subiected t0 2 vertically incident P
ker wavelet with characteristic period 1, = 366 (1, = 4). Material properties and model goometry are the same as in the sisady state
case of Figure 6
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space away from the valley. Amplification of the surface waves inside the valley suggests that most of the
energy associated with the scattered field is trapped inside the valley. The propagation pattern of surface
waves within the valley is complicated by muitiple generation and reflections of surface waves by the edges of
the valley. Therefore, it is difficult to track particular waves individuaily. For the horizontal component of the
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Figure 15. Horizontal component of transient surface displacement response for two semicircular dipping layers subjected to a
vertically incident P Ricker wavelet with characteristic period ¢, = 366 (¢, = 4). Material properties and modei geometry are the same as
for Figurs |4
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lacement ficld (Figure 15) amplification of the scattered waves for stations inside the valley follows a
ern similar to that observed in the corresponding steady state model (see Figure 6). Lines CC and DD
k two surface waves as they move atop the hall-space away from the valley. The siopes and points of
rsections with the time axis for lines CC and DD are similar to the ones for lines AA and BB in Figure 14,
thermore. the patiern of the local surface waves tracked by lines AA and CC (BB and DD) in Figures 14
15 suggests that these waves are actually two displacement components of the same local surface waves.
milar observation can be made for other incident waves.

omparison of strong ground motion amplification for a canyon with one and 1wo dipping layers suggests
the presence of sediment may result in very large amplification of the surface displacement field. These
iparisons demonstrate the importance of the sedimentary deposits in local amplification of the ground
jon. Failure to include sediments in the analysis of localized amplification may result in significant
erestimation of the resulting strong ground motion. The presented results clearly illustrate the import-
: of these phenomena.

tparison with observed earthquake motions

ecently. King and Tucker!? measured the variation of earthquake motion across a sediment-filled valiey.

velocity of the ground motion was measured along two sections of the valley and at two adjacent rock
. The results of the measurements show that response to earthquake motion of a site depends strongly
n frequency and position of the site within the valley and weakly upon the input signal’s azimuth and
ie of incidence. Ratios of the Fourier spectra from soil to spectra from nearby rock sites showed sediment
amplification of up to a factor of ten. A clear difference could be observed between the spectra for
rrent components of the displacement field at the sediment sites. Finally, a larger variation of ground
ion was observed over sections of the sediment profile which span larger changes in sediment thickness
| over the profiles that span sediments of approximately equal thickness. Apparently, with the exception
1e angle of incidence, all the conclusions of the experimental observations are verified by this theoretical
stigation. The discrepancy in angle of incidence may be expiained if one considers the response of an
vial basin from the resonance point of view.!* That would require evaluation of ground motion for an
mble of incident signais of different periods and then use of the peak surface ground motion for
parison with the experiments. Still, the agreement in general features of the response between the
iretical and experimental investigations for the range of frequencies studied here is very convincing and
ific sedimentary basins have to be investigated on a case by case basis. It should be pointed out that the
ulations for different impedance contrasts between the dipping layers are not presented here in order to
ice the number of figures.

CONCLUSIONS

slification of incident plane P, SV and Rayieigh waves by two dimensional dipping layers of arbitrary
s is investigated by using a2 boundary method. Both harmonic and transient incident wave fields are
tidered.

he resuits presented indicate that the presence of sediments may change substantially local amplification
1e strong ground motion. This amplification is very sensitive to the type and frequency of the incident
e. angle of incidence. nature of subsurface irregularity, impedance contrast between the layers, compo-
. of displacement field being observed and the location of the observation station at the surface of the
vium. It is shown that surface waves generated by the edges of the layers play a very important role in the
iting dispiacement patterns atop the deeper parts of the sediments.

he results of this study and the antiplane strain study’ show that failure to take into account the presence
sbsurface irregularities may greatly underestimate the resuiting strong ground motion in a theoretical
lelling of sedimentary basins.
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ATTERING OF PLANE HARMONIC SH, SV, P AND RAYLEIGH
WAVES BY NON-AXISYMMETRIC THREE-DIMENSIONAL
CANYONS: A WAVE FUNCTION EXPANSION APPROACH

HOSSEIN ESHRAGHI AND MARIJAN DRAVINSKI
Department of Mechanical Engineering. University of Southern California, Los Angeles, California 90089-1453, U.S.A.

SUMMARY

tering of elastic waves by three-dimensional canyons embedded within an elastic half-space is mvsngawd by using a
e function expansion technique. The geometry of the canyon is assumed to be non-axisymmetric The canyon is
ected to incident plane Rayleigh waves and oblique incident SH, SV and P waves. The unknown scattered wavefield is
essed in terms of spherical wave functions which satisfy the equations of motion and radiation conditions at infinity,
they do not satisfy stress-free boundary conditions at the half-space surface. The boundary conditions are imposed
lly in the least-squares sense at several points on the surface of the canyon and the half-space.

hrough a comparative study the validity and limitations of two-dimensional approximations (antiplane strain and
ie strain models) have been examined. It is shown that scatiering of waves by three-dimensional canyons may cause
unual change in the surlace displacement patterns in comparison to the two-dimensional models. Thae resuits

eanhquake engineering.

INTRODUCTION

ecent years, the importance of the site effects in the local amplification of strong ground motion has been
| established.! This led a number of researchers to study more realistic problems of ground motion
slification by surface and subsurface irregularities.? The complexity of such problems preciudes the use of
ed form analytical solutions. However, recent advances in computational techniques make numerical
roaches more feasible for realistic problems of interest in strong ground motion seismology and
hquake engineering. Boundary integral equations (BIE) are one of those approaches. This technique
nulates the probiem in terms of boundary values and possibly internal sources.? Solution at interior points
5 not need to be considered in order to soive the integral equations. The main advantage of the BIE
hods is that the discretization is applied only to the boundaries of the scatterers, thus reducing the number
1¢ unknown variables significantly in comparison to the finite element and finite difference techniques.*- 3
he BIE techniques the radiation conditions at infinity are satisfied exactly. The main drawback in the BIE
hods is the requirement for evaluation of the Green’s functions, which often requires a large amount of
\putational effort.? For that reason, another approach in solving the problems of scattering of waves by
r surface irregularities appears to be more effective. The method utilizes the wave function expansion
roach which does not require evaluation of the Green's functions in the course of solving the probiem.
se wave functions satisfy the equations of motion and radiation conditions at infinity. However, in general
r do not satisfy traction-free boundary conditions on the surface of the half-space which must be imposed
dly. These functions can be used to express the scattered fields in complex diffraction problems. Sanchez-
na et al.® used this approach to study scattering of harmonic P, SV and Rayieigh waves by two-
ensional irregularities. Eshraghi and Dravinski”-® extended this technique to transient problems in the
tilayer two-dimensional irregularities for incident SH, SV, P and Rayleigh waves. For three-dimensional
blems. except for axisymmetric geometries, the application of this technique has been very limited.

8-8847/89/070983-16508.00 Received 17 November 1988
1989 by John Wiley & Sons, Ltd. Revised 7 March 1989
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Sanchez-Sesma® used the wave function expansion technique to construct the scattered fieids for axisym-
metric scatterers and vertically incident P waves. Using a wave function approach, Lee!® solved similar
problems for hemispherical alluvial valleys for incident piane harmonic SH, P and SV waves. Day!! used the
finite element method to study scattering of elastic waves by axisymmetric sedimentary basins. Apsel'?
considered the BIE technique ior studying soil-structure interaction for axisymmetric scatterers. Avanessian et
al.'* considered the steady state soil-structur» interaction. The finite clement technique was used to model the
structure and some portion of the surrovesuing soil medium. Beyond the finite clement mesh, expansion in
terms of the spherical wave functions was employed. This study is limited to axisymmetric scatterers and
incident P waves. For an additional review of the literature on scattering of elastic waves by near surface
irregularities the reader is referred to recent papers by the present authors.”*

Since irregularities of practical interest are of arbitrary shape, a general non-axisymmetric model is
considered in the present paper. The wave function expansion technique is used to express the unknown
scattered wave field for such irregularities subjected to obliquely incident SH, SV, P and Rayleigh waves.

STATEMENT OF THE PROBLEM

The geometry of the problem is depicted by Figure 1. The problem consists of a canyon embedded in an elastic
haif-space. The surface of the canyon is considered to be smooth, without sharp corners, Throughout the
paper C, denotes the half-space surface, C, denotes the surface of the canyon and D corresponds to the
domain of the half-space. The medium is assumed to be linearly elastic, homogeneous and isotropic. The half-
space is subjected to an incident plane harmonic SH, SV, P or Rayieigh wave.

In the absence of body forces, the steady state equation of motion in three-dimensional media is defined in
vector form by

BVia+ (A+u)VV-u+oluml, xeD n

W 4

/-iu.._
Slownoss
;uctor °t¢4 _L,_—-_»

incident Slowness
wave plane

\Z
2

Figure |. Problem model
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x and u are position and displacement vectors, respectively, J and u are the Lamé constants and w
es the circular frequency. A system of unit bases {e,, ¢,, ¢,} is defined for spherical coordinates (r, 8, ¢)
ding to Figure 1. For the same coordinate sysiem, the displacement vector u can be expressed in terms of
displacement components u,, u, and u,. Using Helmholtz decomposition the displacement field u can be
n as

u=V0+V(r¥)xe + IV xVx(rye,) (2

:®, ‘¥ and y are the three displacement wave potentials and ! is a scalar factor to give the potentiais the
dimension. Substitution of equation (2) into (1) decomposes the equation of motion in terms of the three
tials according to

(V2 + h3)O(x, w) = 0 (3a)
(V + k3)¥(x,0)=0 (3b)
(V3 + k) x(x, 0)= 0 (30)

: V2 denotes the Laplacian in spherical coordinates and k and k are the longitudinal and shear
wmbers, respectively.
indary conditions on the surface of the hall-space are given by

CamCpy=0ym0, 6 =n/2(z:=0), xeC, 4

! Gre. Gop 20d Gy, are components of the stress tensor. Boundary conditions on the surface of the canyon
ifined by the following equations:

T, =0, N+ 04Ny +0,4n, =0, xeC, (5a)
Tem Cpgt, + Gognty + Gpyny m 0, xeC, (5b)
T,= Gy, + Gog Nty + G ooty = 0, x€C, (5¢)

T,, Tyand T, are the components of the traction vector along the bases e,, ¢, and e, respectively, and n,,
| n, correspond to the components of the unit vector normal to the canyon surface C, . For the siowness
r in the xz-plane expressions for the components of displacement field and stress tensor can be found in
erature.'*

s inciden field consists of Rayleigh waves or oblique incident SH, SV or P waves. For slowness vectors
1 the xz-plane, expressions describing these incident fields can be found in recent papers by the present
rs.”-® For slowness vectors located outside the xz-plane, the corresponding incident field is obtained
gh rotation about the z-axis.

SOLUTION OF THE PROBLEM

rincident wave strikes the surface of the canyon C, , it is scattered back into the half-space. Therefore, the
ield in the half-space consists of the free field and the scattered wavefield. The displacement field can be
n in the following form:

u=u" +u', xeD (6)

superscripts s and ff denote the scattered and free field. respectively. The scatiered wavefield can be
ssed as a linear combination of the wave functions

®* =%, hi? (hr)PT (cos 6) cos mg + s&, h'? (hr)P™ (cos 6) sin mo " (Ta)
mmQ,1,... Mn=01... .NMZEN
W = Y P (kr) PT (cOs8) cos m + ¥, hi2 (kr) P2 (cos 0) sin md (7b)
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2 = cL W (kr) P7 (cos 6) cos me + sZ, k¥ (kr) PT (cos 8) sin mg (Tc)
m=12 ... Mn=1,2,.. . NMZEN

where ¢,,, and s,. are unknown coefficients. N and M are the orders of expansions. h?’ (kr) are spherical
Hankel functions of the second kind and Py (cos 8) are associate Legendre polynomials.!* Summation over
repeated indices m and n is understood. The wave functions in equations (7) are soiutions of the equation of
motion consisting of outgoing waves. Therefore, these functions satisfy the radiation condition at infinity,
however, they do not satisfy the stress-free boundary conditions along the surface of the half-space. These
conditions must be imposed locaily.

Once the scattered wavefield is expressed as a double series of the wave functions, it is necessary to
determine the unknown expansion coefficients. Substitution of the scattered wavefield into the boundary
conditions on the surface of the canyon [equations S(a-c)] at L, collocation points, and into the boundary
conditions on the surface of the half-space [equation (4)] at L, collocation points, resuits in a system of linear
equation of the form

Ge=f t))

where vector ¢ contains the unknown expansion coefficients, vector f corresponds to the free-fieid stresses on
the boundaries C, and C,, and matrix G contains the wave functions and their derivatives. The size of matrix
G is (L x K), where L > K in order to solve equation (8) in the least-squares sense. Once the expansion
coefficients are found, the dispiacement and stress fields can be evaluated throughout the elastic medium.

NUMERICAL RESULTS
Geometry of the canyon

The response of a non-axisymmetric canyon subjected to incident plane harmonic SH, SV, P and Rayleigh
waves is discussed in this section. The canyon is in the form of a semi-eilipsoid defined by

Cix*/al+y*/ai+:*/ai=1,2>0 9)

where a,, a, and a, are the principal axes of the ellipsoid along the Cartesian coordinates x, y and z,
respectively. Results are presented for spherical canyons (a, = a, = a,) and prolates (a, # a; = ay). A
spherical canyon is considered in order to test the method with the available results in the literature and also
for comparison with nor-axisymmetric models. The prolate type of canyon is chosen since it possess non-
axisymmetric features of a general three-dimensional model and facilitates comparison with existing two-
dimensional models. This serves also as an additional test of the numerical results. Namely, by assigning
sufficiently large values to one of the principal axes of the prolate (in the direction normal to the vertical plane
containing the slowness vector of an incident wave), it is possibie to make a systematic comparison with
available solutions in the literature for cylindrical canyons.” ® More about that will be discussed later in this
section.

Conventions

The slowness vector of the incident wave (referred to hereafter as the slowness vector) is specified by two
angles, the azimuthal angle of incidence, ¢, and the off-vertical angle of incidence, 8, (Figure 1). A slowness
plane is defined as a vertical plane which contains the slowness vector. The out-of-plane direction is referred to
as the direction normal to the siowness plane. The in-piane motion is defined as a motion which takes place in
a slowness plane.

The following dimensioniess variables are introduced. The density p and shear wave velocity f for the half-
space material are assumed to be equal to unity and, uniess stated differently, the longitudinal wave velocity z
is taken to be two. All of the distances are normalized with respect to the half-width of the canyon along the y-
axis (a,). In addition to the actual frequency w. a dimensioniess {requency Q is introduced as the ratio of the
maximum width of a cross-section of the canyon (lying in the slowness plane passing through the centre of the
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canyon) and the wavelength of the incident shear wave. For convenience, all numerical results for the surface
displacement field are displayed in terms of the Cartesian components u, v, and w.

Testing of resuits

Numerical accuracy of the proposed method is first assessed through comparison with available results in
the literature. For a spherical canyon subjected to a vertical plane harmonic P wave the resuits are compared
with those of Sanchez-Sesma.® The surface displacement field for stations along the x-axis is depicted by
Figures 2(a) and (b) for two different frequencies of incident wave. The present resuits are in very good
agreement with those obtained previously. In order to test the accuracy of the present technique for non-
axisymmetric geometries and obliquely incident waves, a prolate type of canyon is considered next. The

o 180

-

ANPLITUDE l‘:&
w
A

AMPLITUDE (0=0)

M)

(b)

Figure 2 Amplitude of components of the surface dispiacement field along the x-axis for verucally incident P waves and 3 hemispherical

canyon: (a) dimensionless frequency Q =0~433; (b) Q= 1-299. Throughout. «, v and w correspond to the component of the dispiacement

field along x-, »- and z-directions, respectively. Solid and dashed lines correspond to the results of this investigation for »- and w-

components of the dipiacement field. respectively, while dots correspond to results of Sanchez-Sesma.” The following material propertiss

are assumed: f=pw |, am 1-732 The radius of the canyon is one. The order of the expansion werms M and N, and the number of

collocation points on the surface of the canyon L, and on the surface of the hall-space L, are considered to be the following M =0, N
uls Lem . L, =56
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canyon is subjected to an incident P wave with a siowness vector in the yz-plane (¢, = ~90°). The relatively
large width of the canyon in the out-of-plane direction (a, = 3, a, = a, = 1) allows a comparative study of the
results with those of a simifar two-dimensional (cylindricai) model. Namely, the attenuated scattered waves
from clongated edges reaching the yz-plane may not significantly affect the total scattered wavefield. Figures
3(a){¢c) correspond to the three-dimensional mode! while Figures 3(d)~(f) correspond to resuits obtained
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Figure 3. Amplitude of v- and w-components of the surface displacement field {or stations along the y-axis. Graphs Jal-{c) correspond to

the results (or a prolate type canyon with principal axes a, = 3 and a; = a; = |, while graphs Jd)~) correspond to the resuits for a

cylindncal canyon wath unit radius. Both canyons are subjected to the same incident P waves with slowness vectors lying in the y2-piane

(#9 = 90°). Three off-vertical angies of incidence are considered: 0, = 0°, 30° and 60°. The geometry of the canyons (cut by the siowness

plane) is shown in the lower section of the figure. Q = 0 (relative t0 a;). The (oliowing parameters are assumed hereafter throughout the
figure captions: fmpmi, 3w Mu3 Nu9, [, =96 L, =80
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previously for a two-dimensional model by the present authors using a similar cylindrical wave expansion
technique.”®* The model geometries (cut by the siowness plane to show the direction of incidence) are
illustrated at the bottom of the figure. The results of Figure 3 show that the surface displacement field for the
two models is similar for all angles of incidence. This gives further confidence into the accuracy of the present
technique 1n handling the non-axisymmetric models. Such similarity can be observed {or incident SH. SV and
Rayleigh waves as well.

Response of a prolaie canvon

Figures 4 to 8 correspond to the displacement field for a prolate type canyon (a, = 2, a, = g, = 1). Results
are presented for incident SH. P and Rayvleigh waves for two azimuthal angles of incidence. In addition. three
different off-vertical angles of incidence are assumed for incident SH and P waves. Although the actual
frequency of the incident wave is the same for all these figures. the dimensioniess frequency is one (normalized
relative to a,) for an azimuthal angle of incidence ¢, = 180°, while it reduces to one-half for ¢, = —90°
(normalized relative to a,). In these figures the graphs on the left-hand side correspond to the displacement
field for observation stations along the x-axis and the ones on the right-hand side correspond to stations along
the y-axis. For incident SH waves the results for azimuthal angies of incidence ¢, of 180° and ~90° are
presented in Figures 4 and 5, respectively. For incident SH waves with slowness vectors lying in the xz-plane,
the results on the left-hand side of Figure 4 show that the motion in the xz-plane takes place in the y-direction
only (out-of-plane direction). This is due to the symmetrical features of the model and is in agreement with
what is observed in the two-dimensional approximation (antiplane strain model). However, for stations along
the y-axis [Figures 4(d)~(f)] all three components of the d*~,-lacement field may be present. Apparently, the
two displacement components u. w. non-existent in the two-dimensional approximation, could have
substantial amplitudes. Results for incident SH waves with slowness vectors lying in the yz-plane are shown in
Figure 5. It is interesting to observe how a change of the canyon width in the out-of-plane direction affects the
displacement field. It should be noted that the displacement field for stations along the x-axis (the y-axis) of
Figure 4 must be compared with the displacement field along the y-axis (the x-axis) of Figure 5. By taking into
account that the results of Figure § correspond to a much wider canyon in the out-of-plane direction, one sees
basically no drastic change in the pattern and amplitude of the main component of the displacement field
between the results of Figures 4 and S. This main component of displacement for incident SH waves is in the
out-of-plane direction and is specified in Figures 4 and 5 by the t- and u-components, respectively. However,
the results for the narrower (in the out-of-plane direction) canyon show much larger-amplitudes for the two
non-predominant components of displacement [Figures 4(d)~{f}] than for the wider canyon [Figures 5a)c)].
This is expected, because as the edges of the canyon get further apart in the out-of-plane direction, the model
approaches further and further to a cylindrical geometry (antipiane strain model), where the two non-
predominant components of displacement are non-existent. This sharp increase in amplitude of the two non-
predominant components of displacement for a modei with smaller width in the out-of-plane direction is an
important characteristic of the three-dimensional models studied here.

Figures 6 and 7 correspond to incident P waves with siowness vectors lying in the xz- and jz-planes,
respectively. Similarly to the two-dimensional approximation, for observation stations aiong the x-axis in
Figure 6 and the y-axis in Figure 7. the displacement field consists only of two components which constitute
the in-plane motion. However, for stations along the axis in the out-of-piane direction (v in Figure 6 and x in
Figure 7) an additional SH mode conversion occurs for oblique incidences. Considering the same rule of
comparison between the incidences with azimuthal angles ¢, = 180° and ¢, = — 90°, explained for the SH
case, we observe that, for incident P waves with siowness vectors lying in the xz-piane, the two in-plane
components of displacement (u and w i.; Figure 6) display characteristics similar to those of their counterparts
(v and w in Figure 7) for the incidences with slowness vectors lying in the yz-plane.

Results for incident Rayle‘gh waves with slowness vectors lying in the x2- and yz-planes are depicted by
Figures 8(a), (b) and (8(c), (d), respectively. Considering the same rule of comparison as discussed for two types
of incident SH waves with azimuthal angles of incidence ¢, = 180° and ¢, = —90°. one observes similar
charactenstics between components of displacement for the two incident Rayleigh waves. Analogously to the
incident P waves, an additional component of displacement field in the out-of-plane direction appears for the
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Figure 8. Surface displacement amplitudes at stations along the x. and y-axes for incident Rayleigh waves with siowness vectors lying in
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(relative to a;) and Q=05 (relative to a,), respectively

stations along the y-axis in Figure 8(b) and the x-axis in Figure 8(c). These components of dispiacement do not
exist in the two-dimensional models.

Response comparison for the proiate, spherical, and cylindrical canyons

The results presented so far (Figures 4 to 8) demonstrate that a change in the azimuthal angle of incidence
may greatly affect the surface displacement field. This observation emphasizes the need for three-dimensional
modelling of actual surface irregularities, since two-dimensional approximations may result in a poor
assessment of the actual displacement field. To elaborate further upon this need for a three-dimensionai
analysis and to find limitations on the application of two-dimensional modeis, responses for canyons in the
form of a prolate and a sphere are compared with those of a cylindrical canyon. The prolate is considered to be
narrow in the out-of-plane direction (a, =05, a; may = 1). The maximum width of these canyons in the y-
direction is the same in order to make realistic comparisons. Figures 9 and 10 correspond to a comparative
study of the displacement field response for the three different canyons to incident SH, SV waves, respectively,
with slowness vectors lying in the yz-plane. The results corresponding to the cylindrical model are obtained in
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a earher study b ..e present authors ™ ® using a cylindrical wave function expansion technique. For incident
H waves (Figure 9) only the out-of-plane component of displacement 1s presented to facilitate comparison
ith two-dimensional modeis. Similarity between the results for the sphenical and cylindrical models is
aparent in Figure 9. However. the narrow canvon exhibits compietely different characteristics of the main
>mponent of the surface displacement field. Results for incident SV waves are depicied by Figure 10. Oniy
ie in-piane motion (in the slowness plane) 1s considered here. Apparently. similarity between the response of
sherical and cyhindncal canyons is even stronger than in the case of incident SH waves (Figure 9). However,
1e difference between the results {or the narrow canvon and the other two models is still very pronounced.
imilar observations are made for incident P and Rayleigh waves. The results of Figures 9 and 10 show that,

)r a narrow prolate type canyon. a clear reduction occurs for the in-plane components of the displacement
tld 1n comparison to the other two modeis.

'umerical aspects of the method

At this point it is of interest to elaborate further about some numerical aspects of the solution. It has been
bserved that in solving the steady state problem at low and moderate frequencies only a small number of
tpansion terms and observation points are needed. For the range of frequencies studied here, the results
thibit good accuracy with an azimuthal order of expansion M = 3. However, the convergence of the results is
lore sensitive upon the second order of expansion N. For low and moderate frequencies, say Q < 1-5,
tnerally N =9 provides acceptable convergence. The number of collocation points L, and L,, and their
ications on the surface of the canvon and the half-space, play an important role in the accuracy of the results.
ollocation points are distributed on elliptical contours on the surface of the canyon. These contours are
jually spaced at different elevations from = = 0 to = = a,. For low and moderate frequencies eight contours
roduce accurate resuits. Collcation points are unilormly distributed along these contours. A total of 80
»ilocation points is distributed in this way on the surface of the canyon. In order to satisfy the traction-free
oundary condition on the surface of the half-space, a number of elliptical contours, following the shape of the
inyon edge, are considered on the surface of the half-space. These contours are equaily spaced from the edge
[ the canyon up to three times the width of the canyon at the surface of the half-space. A total of 96
sllocation points uniformly distributed on these contours produced good accuracy of the resuits. As the
equency of the incident wave increases, the number of collocation points and expansion terms needed for
»nvergence increases as well. This results in a more extensive computation. What makes the computation
tpensive is the inversion of reiatively large matrices in solving the ieast-squares probiem [see equation (8)].
1 general. the following criterion has been used to establish the convergence of the resuits: as the number of
ipansion terms and collocation points increases, the results are accepted as the final ones if the maximum
flerence between two successive calculations of the surface dispiacement field is sufficiently small (less than 4
it cent).

CONCLUSIONS

he response of a non-axisvmmetric three-dimensional canvon for different angies of incidence of plane
urmonic SH. SV, P and Rayieigh waves is investigated by using the wave function expansion technique. The
ave functions describe the unknown scattered wavefield. These functions do not satisfy stress-{ree boundary
inditions at the surface of the half-space. These conditions, in addition to the traction-free boundary
mdition on the surface of the canyon, are locally imposed at a number of points on the surface of the half-
ace and on the surface of the canyon.

The results presented provide a basic understanding of the scattering phenomenon due to non-
iisymmetric three-dimensional canyons. A comparative study is done to show the validity and limitation of
¢ corresponding two-dimensional approximations tantiplane and plane strain modeis). For the range of
rquencies studied here. it is shown that. even for the cases where two- and three-dimensional results match
osely for the main components of dispiacement field. the two-dimensional approximation will ignore an out-
-plane displacement component for the case of incident P, SV and Rayleigh waves and an in-plane motion
r the case of incident SH waves which may have significant amplitudes. This is particularly evident for the
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cases of incident SH waves. Results clearly demonstrate that. when the edges of the canyon in the out-of-plane
direction (with respect to the siowness plane) are close to each other, the three-dimensional nature of the
problem 1s essential and it can not be modelled by two-dimensional approximations. Therefore, this strongly
suggests that a complete description of the site phenomenon in strong ground motion will require, in general.
a three-dimensional modelling of actual irregularities.
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Scattering of Elastic Waves by
Nonaxisymmetric Three-Dimensional
Dipping Layer

Hossein Eshraghi and Marijan Dravinski
Department of Mechanical Engineering, University of Southern
California, Los Angeles, California 90007

Using a boundary method, we investigated the scattering of clastic plane harmonic SH.
SV. P. und Rayleigh waves by three-dimensional nonaxisymmetric dipping layers em-
bedded in an clastic half-space. The valley was subjected to incident Rayleigh wave and
oblique incident SH. SV. and P waves. The method utilized spherical wave functions to
express the unknown scattered field. These functions satisfy the equation of motion and
radiation conditions at infinity but they do not satisfy the stress-free boundary conditions
at the surface of the half-space. The boundary and continuity conditions are imposed lo-
cally in the least-square-sense at several points on the layer interface and on the surface
of the half-space. A comparative study was done to cxamine the validity and limitations
of the two-dimensional approximations (antiplane and plane strain models) of three-
dimensional models. It is demonstrated that the two-dimensional approximations may
he inudequate to represent actual displacement field for three-dimensional irregularities.

I. INTRODUCTION

In studying the effects of local site upon strong ground motion. researchers
mostly directed their efforts to solving the problems of ground motion amplifi-
cation by using simplified two-dimensional models.* The validity and limita-
tions of these simplified models were always a matter of speculation, since
available solutions to the three-dimensional models were limited to only axisym-
metric geometries. Recent advances in computational techniques made certain
numerical approaches applicable to more realistic problems of local site effects
(Eshraghi and Dravinski {3]). The wave expansion method. which we use here,
is one of these techniques. This method uses a series of spherical wave func-
tions to represent the scattered wave fields. These wave functions satisfy the
equations of motion and radiation conditions at infinity. but they do not satisty
the traction-free boundary condition on the surface of the half-space. which
must be imposed locally. The approach originates in the works of Herrera and
Sabina [4] and Herrera 5] and has been successfully applied by a number of
researchers to two-dimensionali diffraction problems of interest in strong ground
motion seismology. Only papers dealing with three-dimensional scattering
problems are discussed in this paper.

*For a detailed review of such two-dimensional modeling. see the recent two-part
papcr by Eshraghi and Dravinski (1.2].

Numerical Methods for Partial Differential Equations. 5. 127-345 (1989
€ 1989 John Wiley & Sons. Inc. CCC 0749-159X/89/04327- 19804 .00
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Sanchez-Sesma [6] used the wave function expansion technique to solve dif-
fraction problems for three-dimensional axisymmetric scatterers and vertically
incident P waves. Lee {7. 8] used similar approach to study scattering problems
for a hemispherical canyon and alluvium. Apsel [9] considered a boundary inte-
gral equation (BIE) method for studying soil-structure interaction for axisym-
metric scatterers. Lee and Langston [ 10] used a ray method to solve the transient
problem for amplification of ground motion by an axisymmetric scatterer. In all
of these papers the scatterers were assumed to be axisymmetric. Recently. we
extended the wave expansion technique to study diffraction of seismic waves
by nonaxisymmetric surface irregularities (Eshraghi and Dravinski [3]). In that
paper we provided a detailed comparative study between the responses of two-
and three-dimensional canyons subjected to incident Rayleigh wave and
obliquely incident SH, SV, and P waves. In this paper we extend that work to
nonaxisymmetric valleys. We subject the valley to incident Rayleigh wave and
obliquely incident SH, SV. and P waves. and. in addition to a parametric study
of three-dimensional results. include a comparison between the two- and three-
dimensional dipping layers. Validity and limitations of the two-dimensional
approximations are also examined for a class of problems at hand.

iIl. STATEMENT OF THE PROBLEM

Geometry of the problem is depicted by Figure 1. The model consists of a
soft dipping layer embedded within an elastic half-space. Throughout the paper
C, denotes the surface of the half-space and the valley at - = 0. while C, de-
notes the interface between the layer and the half-space. Domains D, and D,
correspond to the half-space and the dipping layer, respectively. Summation
over repeated indices is understood. Underlined indices indicate that the sum-
mation is being suppressed. The layer interface C, is assumed to be smooth,
without sharp comners. Material of the medium is chosen to be linearly elastic.
homogeneous, and isotropic. The half-space is subjected to incident plane har-
monic SH, SV, P, or Rayleigh waves.

Steady-state equation of motion in a three-dimensional media, in the absence
of body forces, is defined in a vector form by

w,Vou, + N+ )YV o+ w'u, =05, €D, (j=0.1) (D)

where subscripts j = 0 and I correspond to the half-space and dipping layer,
respectively, x, is a position vector while u, denotes the displacement vector.
Lame’s constants are denoted by A, and u,. and w is the circular frequency. A
system of unit basis {e,. ey, ¢4} is defined for a spherical coordinates (r. 8. &)
according to Figure I. For the same coordinate system the displacement vector
u, can be expressed in terms of three displacement components u, . u,. and u,.
Using the Helmholtz decomposition the displucement field u can be written as

u, =V, + V(¥ x e, + €V x V X (rxe,), (j=0.1 )

where @, ¥ “and x, are the three displacement wave potentials for the jth
layer and € is a scalar factor to give potentials the same dimension. Substitution
of Eq. (2) into (1) decomposes the equation of motion in terms of the three po-
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FIG. 1. Problem model.
tentials according to
(V? + h)®,(x,. @) = 0 (3a)
(Vi + k,z)‘l',(z,.w) =0 (3b)
(V* + kf)x,(;_cl.,w) =0, (j=0,1) (3c)

where h, and k, denote the pressure and shear wavenumbers, respectively.
Boundary conditions on the surface z = 0 of the half-space and the valley
are given by
Ty = Ogg = Ty, = 0, 0=m/2z =0, x € C,, (j=0.1).
4)
where @4, 04, and o,, are components of the stress tensor. Perfect bonding

along the layer interface C, requires continuity of displacement and traction
fields according to

Uolx. ) = u;(x. w) (5a)
. Lix,e) =TIk (Sb)

where u and T are the displacement field and traction vectors with components
along the basis ¢, . ¢,, and ¢,, respectively. Superscripts + (—) denotes that the
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intertace is being approached from the outside tinside). The components of the
traction vector are defined according to

T.=on +amn, 0,0, t6a)
T, =on + on, + aun, 16b)
T, =00 + dun, + oun, (6¢)

Here. o.,. 0. 0,4, Tpy. Ty, and o, are components of the stress tensor. and
n..n,. and n, correspond to the components of unit vector normal to the inter-
tace C, (see Figure 1). Expressions for the components of displacement field
and stress tensor in terms of the displacement potentials can be found in litera-
ture (Pao and Mow [11]).

Incident fieid consists of plane harmonic Rayleigh wave or oblique incident
SH. SV. or P waves. For slowness vector within the xz-plane. expressions de-
scribing these fields can be found in recent papers by the present authors
(Eshraghi and Dravinski [1.2]). For slowness vector located outside the xz-
plane, corresponding incident field is obtained through rotation about the =-
axis. This completes the statement of the problem. Solution of the problem is
considered next.

Iil. SOLUTION OF THE PROBLEM

As an incident wave strikes the interface C,. it is partially reflected back into
the half-space D, and partially transmitted into the top layer D,. Consequently.
the wave field in the half-space consists of the free-field and the scattered wave
tield, while the wave field inside the dipping layer consists of the scattered
wave field only. The displacement field can be written in the following form

Uy = E’I + uy. X €D, (7a)
u, =u,, XED,. (7b)

where u = (u,.uy uy). X = (r. 6, d). and superscripts s and ff denote the scat-
tered and free-field. respectively. The scattered wave field can be expressed as
a tinear combination of the wave functions according to

&), = 4l hPhyrIP M(cos 8) cos md

+ b2 WP (hyr)P Mcos 8) sin md {8a)
m=20,1...., M. n=0.1,.... N. M=N. xe>b,.
Wi = a¥ h'¥k,r)P cos 6) cos md
+ bYW (k,rP Mcos 0) sin md (8b)

m=12... ..M, = 1.2, ..M M= N. YED..

= a) h(korIP Mcos 0) cos mb
+ bY . (kyrIP Micos 8) sin md 18¢)

>
P
|

m=1.2,....M, n=1.2....N, M=N, X€D,.
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& = ¢y jP(h,r)PM(cos ) cos md
+d? j2(hy)P (cos B) sin me (8d)
m=0,1,... .M, n=0,1,....N. M < N. XED,.

¥ = ¢ jPk,r)P M(cos 6) cos md
+ dy jP(k,;r)P (cos ) sin md (8e)
m=12....M, n=12,...,N, M=<N, xX€E€D,.
X\ = cXj2(k,r)PMcos 6) cos m
+ d %), (k,r)P M(cos 6) sin md (8)

m=12,....M, n=1,2,...,N, M =N, X€D,,

where a,,,, b,,, c,,, and d,,, are unknown coefficients, N and M are the orders
of expansions, h;?(kr) are the spherical Hankel functions of the second kind,
Ja(kr) are the spherical Bessel functions of the first kind, and P(cos @) are the
associate Legendre polynomials (Abramowitz and Stegun [12]). As indicated
carlier, summation over repeated indices is understood. The wave functions in
Egs. (8) are solutions of the equation of motion (Eq. 1). Furthermore, the scat-
tered wave field within the half-space D, consists of outgoing waves only, thus
satisfying the radiation conditions at infinity. The scattered waves within the
dipping layer D, consists of standing waves only. It can be seen that these wave
functions do not satisfy the stress-free boundary conditions along the surface of
the half-space. These conditions must be imposed locally.

To evaluate the scattered wave field and subsequently the total displacement
field everywhere within the domain of the problem, it is necessary to determine
the unknown expansion coefficients in Eqs. (8). Substitution of the scattered
wave field into the continuity conditions on the surface of the layer interface C,
(Eqs. 5) at L, collocation points, and into the boundary conditions (Eq. 4) on
the surface z = 0 of the half-space and the valley at L, collocation points, re-
sults in a system of linear equation of the form

Ge=f, 9

where vector ¢ contains the unknown expansion coefficients, vector f corre-
sponds to the free-field displacements and stresses on the boundaries C, and C,,
and matrix G contains the wave functions and their derivatives. The size of
matrix G is (L x K), where L > K in order to solve Eq. (9) in the least-square-
sense. Once expansion coefficients are found, the displacement and stress fields
can be evaluated throughout the elastic medium.

This concludes the solution of the problem. Numerical results are presented
next.

IV. NUMERICAL RESULTS

In this section, the numerical results are presented for response of non-
axisymmetric valleys subjected to plane harmonic Rayleigh waves and oblique
incident SH, SV, and P waves.
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A. Geometry of the Valley

The shape of the layer interface C, is assumed to be in the form of a semiel-
lipsoid defined in the Cartesian coordinate system (x. v. z) according to

lay + viai + i = 1 >0, (10}

where a,. a,, and a, are the principal axis of the ellipsoid along the coordinates
x. v. and :. respectively. In particular, the results are presented for spherical
valleys (a), = a, = a;) and prolates (a, # a, = a,). The spherical valley is
considered for comparing the results of the present investigation with those
available in the literature. On the other hand, prolate type of valley is used to
investigate the nonaxisymmetric features of a general three-dimensional model.
The choice of these two models allows a comparison between the results of
axisymmetric and nonaxisymmetric models. Furthermore, a prolate type valley
can be used to test the overall accuracy of the proposed technique. Namely, by
assigning sufficiently large values to one principal axis of the prolate. it is pos-
sible to make a systematic comparison with available solutions in literature for
cylindrical valleys (Eshraghi and Dravinski [1, 2]). This model also can be used
to establish the validity and limitations of the corresponding two-dimensional
approximations (antiplane and plane strain models).

B. Conventions

Throughout the paper the following conventions are used (Eshraghi and
Dravinski [3]). The slowness vector of an incident wave (referred hereafter as
the slowness vector) is specified by two angles, azimuthal angle of incidence,
&,. and off-vertical angle of incidence 6, (Figure 1). A slowness plane is de-
fined as a vertical plane that contains the slowness vector. In particular. when
the slowness vector is contained within the xz-plane ( yz-plane) the incidence is
defined as an azimuthal (off-azimuthal) one. The out-off plane direction is re-
ferred to as a direction normal to the slowness plane. The in-plane motion is
defined as a motion that takes place in a slowness plane. In addition to the ac-
tual frequency w, a dimensionless frequency (1 is introduced as the ratio of the
maximum width of a cross-section of the dipping layer (lying in the slowness
plane passing through the center of valley) and the wavelength of the incident
shear wave. Unless stated differently, the density and shear wave speed for the
material of the half-space are assumed to be equal unity and comresponding Pos-
sion’s ratio for al] materials is taken to be 1/3. For convenience, all numerical
results for surface displacement field are displayed in terms of the Cartesian
components u, v, and w.

C. Testing of Resulits

To assess numerical accuracy of the proposed method, diffraction of a verti-
cally incident P.wave by a spherical dipping layer embedded in a haif-space is
investigated first. Amplitude of surface displacement field is depicted by
Figure 2. The results of Sanchez-Sesma [6] obtained previously for the same
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FIG. 2. Surface displacement field amplitudes for stations along the x-axis and a hemi-
spherical valley of unit radius subjected to a vertically incident P wave. The dimension-
less frequency () of the incident wave is 0.833. The following material properties are
assumed: For the half-space, 8o = po = 1, @ = 1.732, and for the dipping layer,
B = 0.707. p, = 0.6, a, = 1.414. The order of expansion terms M and N are assumed
tobe: M = 0, N = 14. The number of collocation points on the surface of the layer in-
terface L, and on the surface z = 0 of the half-space and the valley L, are considered to
be as following: Lo = 24, and L, = 40. Throughout, u, v, and w correspond to the three
components of the displacement field along the axis x, y, and z, respectively. Solid and
dash lines correspond to the results of the present study, while dots correspond to results
of Sanchez-Sesma [6).

problem are displayed as well. Very good agreement between the two results
can be observed.

To test the accuracy of the present technique for nonaxisymmetric geometries
and obliquely incident waves, a prolate type of valley is considered next. The
valley is subjected to an off-azimuthal incident P wave (Figure 3). Larger width
of the valley in the out-of-plane direction (a, = 2,4, = a3 = 1) allows a com-
parative study at low frequency of the results with those of a similar two-
dimensional (cylindrical) models studied previously by the same authors
(Eshraghi and Dravinski [1,2]). Namely, the attenuated scattered waves from
elongated edges reaching the yz-plane may not significantly affect the total scat-
tered wave field. In Figure 3, the graphs in the first column (3a~c) correspond
to the results obtained for the prolate, while those in the second column corre-
spond to the results of the cylindrical model. The model geometry (cut by the
slowness plane to show the direction of incidence) is illustrated in the bottom of
each column. Similarity of the results between these two models are obtained
for all angles of incidence studied here. Such similarity can be observed for in-
cident SH, SV, and Rayleigh waves as well. To reduce the number of figures,
they are omitted here. This concludes testing of the results. Response of a non-
axisymmetric valley is considered next.
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FIG. 3. Comparison of the in-plane components of the surface displacement fieid (v- and

w-components) of a prolate type of valley (a—c) with those of a cylindrical valley (d-f)
for stations along the y-axis. For the prolate the principle axis are a, = 2, a, = a; = 1,
while for the cylindrical valley the radius is one. The geometry of the valleys (cut by the
slowness plane) are-illustrated in the lower section of the figure. Both valleys are sub-
jected to same off-azimuthal incident P waves (¢, = —90°). Three off-vertical angles of
incidence are considered: 6, = 0°, 30°, and 60°. {1 = 0.5 (relative to a,), M = 3,
N =11, L, = 104, and L; = 124. The following material properties are assumed here-
after: Bo=po =1, 0 =2,8, =05, p,=2/3, a, = 1.
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D. Response of a Nonaxisymmetric Valley

Surface responses for a prolate type valley (¢, = 2.a. = a, = 1) are shown
in Figures 4 through 7. For stations along the x- and the v-axes displacement
field is obtained for three off-vertical incident SH and P waves. Both azimuthal
and off-azimuthal incidences are considered. Actual frequency of the incident
wave being w = 1.571 sec”' results in a dimensionless frequency of one (rela-
tive to a,) for the azimuthal incidences and one half (relative to a.) for the off-
azimuthal incidences. For Figures 4 to 7, graphs in the first and second column
correspond to the surface response for the observation stations along the x- and
v-axes. respectively.

Results for azimuthal and off-azimuthal incident SH waves are depicted by
Figures 4 and 5. respectively. For azimuthal incident SH waves and stations
along the x-axis the motion occurs in the out-of-plane direction only
(Figures 4a—c). This agrees with the two-dimensional antiplane strain model
However. for stations along the v-axis (Figures 4d-f) all three components of
displacement field may be present. Of interest in these graphs is large ampli-
tude of the vertical component of displacement field. This component, not pre-
sent in the two-dimensional approximation. can assume values comparable to
the amplitude of the predominant component (the v-component) us shown by
Figure 4d. At this point it is interesting to observe how change «f the valley
width perpendicular to the slowness plane affects surface displacement field.
For that purpose. the valley considered in Figure 4 is reinvestigated for off-az-
imuthal incident SH waves as shown by Figure 5. It should be noted that for
realistic comparison, displacement field for stations along the x-axis (the y-axis)
for azimutha! SH-incidences must be compared with displacement field along
the v-axis (the x-axis) for off-azimuthal SH-incidences. Therefore, the results of
Figure 5 correspond to a relatively wider valley (in perpendicular direction to
the slowness plane) than those of Figure 4. By comparing the main component
of displacement fields of Figure 4d—f with Figure Sa—c, one finds very little
similarity between the two. This main component of displacement field for in-
cident SH wave is specified in Figures 4 and 5 by v- and u-components, respec-
tively. Better agreement can be observed between results of Figures 4b and ¢
and Figures Se and f for the main component of displacement field. However.
the vertical component of displacement field that has substantial amplitude for
the narrower valley (Figure 4d-f) is reduced considerably for the wider valley
(Figure 5a-c). Significant amplitude of the vertical displacement component,
which is not present in the antiplane strain model, demonstrates clearly the im-
portance of three-dimensional modeling of realistic valleys. It is interesting to
note that for geometrically similar three-dimensional canyons (Eshraghi and
Dravinski [3]). considerably greater similarity could be observed for predomi-
nant displacement components between the narrow and wide canyons than be-
tween corresponding valleys studied in this paper. Furthermore, the amplitudes
of nonpredominant components of displacement field (the in-plane motion) for
the canyon appear to be considerably smaller than those of the valley. This
large amplitude of the two nonpredominant components of displacement field
(specially for the narrower valley) is an important characteristic of three-dimen-
sional models studied here.
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Figures 6 and 7 correspond to surface response tor azimuthal and ott-azimuthal
incident P waves. respectively. For stations along the axis in the out-oft plane
direction an additional component of displacement is present in that plane (dask
and solid lines in Figure 6d-t and a—c, respectively). Considering the same rule
of comparison defined earlier for incident SH case. one observes more similar-
ity between the results for azimuthal and off-azimuthal incident P waves than
those tor the incident shear waves. As expected. for the vertically incident
P waves, the displacement field is identical for both azimuthal and off-azimuthal
incidences.

E. Two-Dimensional vs. Three-Dimensional Modeling

Results in the last section illustrate that for nonaxisymmetric valleys a
change in azimuthal angle of incidence affects the displacement field substan-
tially. Results for the azimuthal and off-azimuthal incidences display different
characteristics in general. This dissimilarity is more pronounced here than in
the geometrically similar canyons (Eshraghi and Dravinski [3]). Furthermore. it
was observed that the extra components of displacement field that are not pres-
ent in the two-dimensional approximations (antiplane and plane strain mod-
els). may have substantial amplitude. These results emphasize the need for
three-dimensional modeling of realistic probiems of interest in the strong
sround motion seismology and earthquake engineering. To enhance further
upon the need for a three-dimensional analysis, response for valleys in the form
of a prolate (a, = 0.5,a, = a, = 1) and a sphere are compared with those of a
cylindrical valley. This comparison should illustrate the limitations of thc two-
dimensional models in approximating more general three-dimensional prob-
lems. Figures 8 through 10 display the surface response for three types of
valleys to off-azimuthal incident SH, SV, and Rayleigh waves, respectively. To
make realistic comparison, we chose valleys having identical widths along the
v-axis. Results for cylindrical valleys are obtained in an earlier study by the
present authors using a cylindrical wave function expansion technique (Eshraghi
and Dravinski [1, 2]).

Results of Figure 8 correspond to off-azimuthal incident SH waves. To sim-
plify the comparison between the responses of three dimensional and two
dimensional models, only the out-of-plane component of displacement field is
displayed. Apparently, there are no similarities between the responses for dif-
ferent types of valleys in this figure. For incident SV and Rayleigh waves. only
the in-plane motion (in the slowness plane) is considered, 1.e.. only v- and
w-components of displacement field are displayed in Figures 9 and 10.
Analogously 1o the results obtained for incident SH case quite different patterns
can be observed for different types of valleys studied here. It is interesting to
mention that in the similar study for the canyons (Eshraghi and Dravinski [3]).
the surface response for the narrow three-dimensional canyon was completely
different from those of spherical and cylindrical canyons. However. in that
study very similar results were obtained for the spherical and cylindrical
canyons. Therefore, presented results clearly demonstrate that in general the
three-dimensional nature of the problem is essential in modeling of the actual
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FIG. 9. Amplitude of the components of inplane motion (v- and w-components) along
the y-axis for off-azimuthal incident (¢ = ~90°) SV waves and a prolate type valley
with principal axis a; = 0.5, a; = a4y = 1 (a~c), a spherical valley with radius of one
(d-f). and a cylindrical valley with the radius of one (g-i). {} = 0.75 (relative to a,).

M=3 N=11,L,=104,and L, = 124.

irregularities and that two-dimensional models may result in rather inadequate
approximations. Furthermore, comparison of the present results with their
counterparts for the canyons (Eshraghi and Dravinski [3]) shows that presence
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FIG. 10. Amplitude of the components of the inplane motion (v- and w-components)
along the v-axis for off-azimutha! incident (¢y = —90°) Rayleigh waves and a prolate
type valley with principal.axis @, = 0.5. a; = a; = 1 (a), a spherical valley of unit ra-
dius (b), and a cylindrical vailey of unit radius (c). 2 = 0.75 (relative to ;). M = 3,
N=1l,L,=104.and L, = 124.

of alluvial valleys results, in general, in a larger amplification of surface
ground motion than those observed for the canyons. This amplification appears
to be more pronounced for three-dimensional valleys than for their two-dimen-
sional approximations as results in Figures 8 to 10 clearly demonstrate.

F. Numerical Aspects of the Method

It is useful at this point to elaborate in some detail aboul the numerical
aspects of the solutions presented in this paper. First. it should be pointed out
that the number of expansion terms and collocation points needed for conver-
gence of the results increase as the frequency of the incident wave increases.
For the range of frequencies studied here, good accuracy can be obtained with
an azimuthal order of expansion M = 3. However. the results are more sensi-
tive upon the second order of expansion N (see Egs. 8). For low and moderate
frequencies, say §2 < 1.5, generally 8 < N < 12 provides acceptable conver-
gence. It is observed that location and the number of collocation points L, and
L, play a crucial rule in the convergence of the results. These points are distrib-
uted on elliptical contours on the surface of the layer interface C, and also on
the surface C, (z = 0) of the half-space and the valley. On interface C, these
contours are equally spaced at different elevations from z = 0 to = = a,. For
low and moderate frequencies eight to ten contours are sufficient. A total of 82
to 104 collocation points are uniformly distributed along these contours. Similar
elliptical contours are considered on the surtace of the half-space. These con-
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tours follow the shape of the valley edge and are equally spaced from the origin
up to three times the width of the valley at the surface of the half-space. Twelve
contours equally spaced this way on the surface of the half-space contained a
total of 124 uniformly distributed collocation points. The order of expansion
and the number of collocation points is determined through the following con-
vergence criteria: First the material properties of the half-space and the dipping
layer are assumed to be the same. This should results in the free field for total
wave field. The orders of expansion and the number of collocation points are
increased until the total wave field is identical to the free field one. Subse-
quently, for different material properties of the layer and the haif-space the order
of expansions and the number of collocation terms are further increased until
the difference between two successive calculations are judged to be sufficiently
small. This concludes the analysis of numerical results.

V. CONCLUSIONS

Amplification of incident plane harmonic SH, SV, P, and Rayleigh waves by
nonaxisymmetric three-dimensional valleys of arbitrary shape is investigated
by using a boundary method. Different angles of incidence are considered.
Scattered wave fields are expanded in terms of spherical wave functions that
satisfy the equation of motion and radiation conditions at infinity but they do
not satisfy wie stress-free boundary conditions at the surface of the half-space.
These conditions are imposed locally at a number of points atop the valley and
the half-space.

Results presented in this investigation demonstrate the importance of three-
dimensional modeling of the actual alluvial valleys. For the range of frequen-
cies studied it is shown that for the valleys with elongation (in the out-of-plane
direction) being more than twice that of the corresponding width in the slow-
ness plane, a two-dimensional approximation could results in a fairly similar
response for the predominant components of displacement field. It is shown
that the two-dimensional models ignore an out-of-plane displacement compo-
nent for incident P, SV, and Rayleigh waves and an in-plane motion for inci-
dent SH wave that may be significant in amplitude. Presented results show that
similarity of predominant components of displacement field between the valley
and its two-dimensional approximations deteriorates as the elongated width of
the valley (in direction perpendicular to the slowness plane) reduces in size.
This deterioration reaches a point where no apparent similarity may exist be-
tween the results of a spherical valley and its two-dimensional counterpart. For
the range of frequencies studied here, this rate of deterioration is significantly
faster here than the one observed for the canyons (Eshraghi and Dravinski {3]).
Therefore, the results of the present study strongly suggest that complete de-
scription of the site phenomenon and corresponding strong ground motion will
require a three-dimensional modeling of the actual alluvial valleys.

This material is based on work supported in part by the National Science
Foundation uiider grant 53-4519-3792 and in part by the Office of Naval Re-
search under contract NO0OO14-88-K-0157.
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AMPLIFICATION OF ELASTIC WAVES BY A THREE
DIMENSIONAL VALLEY. PART 1: STEADY STATE RESPONSE

TOMI K. MOSSESSIAN® AND MARIJAN DRAVINSKI
Department of Mechanical Engineering, University of Southern California. Los Angeles, California 90089. U.S.A.

SUMMARY

Steady state scattering of incident P, SV, SH and Rayleigh waves by general non-axisymmetric three dimensional dipping
layers is investigated by using an indirect boundary integral equation method. Material of the half-space and the layer is
assumed to be linear. weakly anelastic, homogeneous and isotropic.

Systematic comparisons between three dimensional and two dimensional models demonstrate that the validity of a
two dimensional approximation for a given basin shape may be affected strongly by changes in azimuthal angle of
incidence, type of incident wave and {requency. The discrepancies of two dimensional modelling appear to be much more
pronounced for the case of an incident SH wave. Another important feature of the results is the existence of strong
coupling between P'SV and SH modes. which has no correspondence in two dimensional modeis. Such off-azimuthal
mode conversions are particularly strong for an incident SH wave.

INTRODUCTION

The importance of local site effects on strong ground motion has been well recognized.! The site conditions
appear mainly in the form of irregular surface topographies (canyons and ridges) and/or soft subsurface
layers (sedimentary basins). The seismic response of sedimentary valleys is especially important since many
highly populated areas are located on such basins, e.g. Mexico City? and Los Angeles.® In recent years the
amplification effects of sedimentary basins have been the subject of numerous experimental and theoretical
studies. For a detailed review of literature on the subject the reader is referred to articles by Dravinski and
Mossessian,* Moczo et al.® and Aki.! Most of the recent theoretical investigations have been limited to two
dimensional plane strain models.® = Three dimensional studies are few in number and are mostly limited to
simple geometries and axisymmetric cases. Lee!? investigated diffraction of elastic plane harmonic P, SV and
SH waves by a hemispherical valley using the method of series expansion. His solution is applicable for
basins of spherical shape only. Day!! used the finite element technique to study the response of a cone-
shaped sedimentary basin due to a dislocation source. Sanchez-Sesma'? considered diffraction of a vertical
incident P wave by several types of irregularities including alluvial basins using a wave function expansion
approach. Both studies were limited to axisymmetric cases. Lee and Langston'? studied wave propagation in
a three dimensional circular basin subjected to incident plane P and SH waves using a ray technique. Their
solution is applicable only in the high frequency range. Very recently, Khair et al.'*-'* have considered three
dimensional amplification of P and SV waves by cylindrical valleys. However, their model in not a general
three dimensional one, and it corresponds to the problem of two dimensional type vaileys subjected to a three
dimensional plane incident wave field.

In this paper, an indirect boundary integral equation method is applied to study the ampilification of elastic
waves by a three dimensional dipping layer of arbitrary shape. The present work is an extension of the recent
study done by the authors'® in which they investigated seismic response of canyons of arbitrary shapes. The
model used in this study is a general three dimensional one. Incident plane harmonic SH, SV, P and Rayleigh

*Presently at Structural Research and Analysis Corp. 1661 Lincoln Bivd, Suite 200, Santa Monica. CA 90404, US.A.
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waves are considered. A general formulation of the problem is presented. The accuracy of the method is
tested through comparison with results of some earlier studies. The effects of different parameters such as
basin shapes, types of waves, angles of incidence and frequency are investigated. The validity of two
dimensional models is examined through several comparisons between three dimensional and corresponding

two dimensional responses.

STATEMENT OF THE PROBLEM

The geometry of the model is depicted by Figure I. The basin is modelled as a singie dipping layer of
arbitrary shape perfectly bonded to a half-space. The spatial domain of the half-space is denoted by D, and
that of the layer by D,. The interface between the layer and the half-space is denoted by S, and it is assumed
to be sufficiently smooth without sharp corners. The material of the half-space and the layer is assumed to be
weakly anelastic, homogeneous and isotropic. The half-space is subjected to incident plane harmonic P, SV,

SH and Rayleigh waves.
The equation of motion for steady state elastic wave propagation is specified by

(/'.j+uj)VV.u,~+-uszllj+p,wzll,-=0; j=0' l,XEDoUD1 (1)
{no summation over j)

where u; = (u, v, w) is the displacement vector, x is the position vector, p; is the density and 4; and u; are the
Lamé constants. These constants are assumed to be complex numbers to account for anelasticity.!’
Subscripts 0 and 1 correspond to the half-space and the layer, respectively. Throughout the paper the term
exp(iwt) is understood. Stress free boundary conditions along the surface of the half-space are specified by

0 =0,,=0.=0 z=0, xeDou D, ()
The co:.tinuity of the displacements and tractions along the interface §; is given by
U=4u,; XE€S (3a)

=t xeS (3b)

where t}, j = 0, 1 are the traction vectors at the surface S, with unit normal v. The usual radiation conditions
should be satisfied by the scattered wave field at infinity.

METHOD OF SOLUTION
The total displacement field in the half-space and the dipping layer is specified by
w=u’+u);, xeD, (4a)
u, =uj; xeD, (4b)

where the superscripts fT and s denote the [ree and scattered wave field, respectively. Following an indirect
boundary integral equation approach,* !® the scattered field is assumed to be generated from the distribution
of unknown forces f,(y) and f,(y) over auxiliary surfaces SO and S!, respectively. The auxiliary surfaces S?
and S} are located inside and outside of the surface S;, respectively. Hence the scattered displacement field in

the half-space and the dipping layer can be written in the form

u%*f G(x,y)o(y)dS2y):  xeD, (5a)
s?

= j Gl yL(n)dSiy):  xeD, (5)
s,
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Figure 1. Problem model

where G is a half-space displacement Green's function tensor.!” The element G,;(x, y) corresponds to the ith
component of the displacement vector at x due to a unit harmonic force at y acting in the jth direction. The
theoretical development of these Green's functions is rather involved; their complete explicit forms can be
found in the article by Mossessian and Dravinski,'$ and also in Mossessian.!?

Choosing fo(y) and f, (y) to be distributed at discrete points x,, and x; on the surfaces S? and S, then the

total wave field follows from equations (4a, b) and (5a, b)
o =u" + G(x,x )5, xe&Dy, x,€8), m=1.2....M (6a)
u, =G(x,x)f', xeD,,xeS}, I=12...,L (6b)

The unknown force magnitudes f3 and ! are yet to be determined for all m and /. Throughout, summation
over repeated indices is understood. Using equations (6a, b), the components of total traction along the
surface §; become

to=t"+T(x,x )5 xe&S; m=12... .M (7a)
t, = T(x, x)f%; xeS; I=12...,L (7b)
where t'f is the free-field traction vector and T is the half-space traction Green's function tensor. The
component T;,(x, x,,) corresponds to the ith component of the traction vector at x due to unit harmonic force
at x,, acting in the jth direction. For simplicity, the superscript v is suppressed. By choosing N observation
points along the surface S, the corresponding traction field can be stated as follows: |
to(x,) = t(x,) + T(x,, x,)(3; Xn€S) (8a)
ty(x,) = T(x,, x,)f}; x €S, (8b)
X.€8, n=12...,N; m=12...,M, I=12...,L
Using equations (8a, b), the continuity conditions given by equations (3a, b) assume the following form:

Gima; T=(fl,03, ... 1801, . 97 ©9)

where vector f contains the unknown force magnitudes, and matrix Gy and vector a are known. Choosing N
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greater than M and L, equation (9) is solved in the least square sense. Once the magnitudes of the forces f are
known, the total wave field within the half-space and the valley can be obtained through equations (6a. b).

NUMERICAL RESULTS AND DISCUSSION

The geometry of the valley is assumed to be in the form of a semi-prolate dipping layer. This allows
systematic comparison with available two dimensional results, without loss of general three dimensional
characteristics of the model. This geometry can be defined in the following parametric form:

x =acos(t)cos(s) (10a)

y = bcos(1)sin(s) (10b)

== bsin(t) (10c)
0<t<n/2, 0<s<2n

where a and b are the major and minor axis of the semi-prolate. The minor axis b is chosen to be equal to one
throughout the caiculations. For different valley shapes only the major axis ‘a’ is varied. To reduce the
number of figures, only the results for cross sections y = 0 and x = 0 are presented, and they will be referred
to as sections A and B, respectively. In addition, two types of planes are distinguished in this paper: an
azimuthal plane is defined to be a vertical plane which contains the slowness vector of the incident wave; all
other planes are denoted as off-azimuthal planes. For example, if the slowness vector of the incident wave
field lies in the xz-plane, section A is an azimuthal plane while section B is an off-azimuthal plane. Incident
waves are plane P, SV, SH and Rayleigh waves. The azimuthal angle of incidence ¢ is measured
counterclockwise from the negative x-axis (Figure 1). The off-vertical angle of incidence 8 is measured from
the positive z-axis toward vector r, which defines the azimuthal position on the surface of the half-space. The
amplitudes of the incident waves are the same as those used by Dravinski and Mossessian.* For convenience,
a dimensionless frequency of incident wave {) is defined as the ratio of the length of the valley along section B
{(which is equal to 2 for all the valley shapes) and the wavelength of the shear wave in the half-space.

The accuracy of the method is highly dependent on the location of auxiliary surfaces, S? and S!, the
number of sources, M and L, and the number of observation points, N. The auxiliary surfaces are chosen to
be in the following form:

xJ=(1-¢x (11a)
xi=(1+&x (11b)
0<éxli

where the components of x are described in equations (10a—c). Through numerical experiments the value of
the parameter { is chosen to be between 0-4 and 0-5. The sources and observation points are distributed
uniformly along several rings (with constant values of z) on the surfaces §?, S!, and §,, respectively. The
number of sources M and L and observation points vary for different cases, depending on the shape of the
scatterer and frequency. In calculations for different frequencies the positions of the auxiliary surfaces are
kept the same and only the numbers of sources and observation points are changed. For the examples
considered here a typical range for M and L is between 81 and 105 (for all the cases M and L are chosen to be
equal), and for N it is between 177 and 245.

Testing of the method
To establish the numerical accuracy of the method, scattering of a vertical incident harmonic piane P wave
by a hemispherical valley studied earlier by Sanchez-Sesma'? is reconsidered. Clearly, this probiem is
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axisymmetric. The surface displacement field at section A is depicted in Figure 2. It is evident from Figure 2
that the results of the two independent studies are in excellent agreement. Further testing of the method for
non-axisymmetric cases has also been conducted through comparisons with the results of a hybrid
technique.!® The results of these comparisons have been shown to be very satisfactory.

6 -
A
A
“ ]
2 1 x 7.3 — o W
=0~
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Figure 2. Amplitude of surface displacement spectra for a hemispherical valley and vertical incident P wave and for dimensionless

frequency Q = 0-866. Material properties of the half-space and the valley are u, = S, = 1, 25 = 1-732, 4, = 0-3, 8, = 0707, 2, = 1-323.

Radius of the valley R = 1. Dash, dash-dot and solid lines represent x-, y- and :-components (u, v, w) of the displacement vector,

respectively obtained in this investigation (this convention is used up to Figure 6). The triangles and open circles denote z- and x-
components of the displacement vector by Sanchez-Sesma'?
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Figure 3. Amplitude of surface displacement spectra (or a hemispherical valley of a unit radius R = | at section B for incident P, SV, SH

and Rayleigh waves (denoted by R) with azimuthal angle of incidence ¢ = 0* and off-vertical angle of incidence § = 0°, 30°, 60°. Q = 0-5.

Material properties of the half-space and the valley: o = o = 1, 2, = 2, y, = 1/6, §, = 05, 2, = 1, Q, = Q, = 100. (Unless stated
differently. all material properties are kept the same)
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Response of hemispherical valleys

Throughout the calculations the intrinsic shear wave velocities of the valley and the half-space are assumed
to be equal to one-half and one, respectively. The Poisson ratio v for all materials is chosen to be 1 3. Figure 3
shows the surface displacements at section B for incident P, SV, SH and Rayleigh waves with azimuthal angle
¢ = 0° (an off-azimuthal case). The dimensionless frequency Q is equal to one-half. For oblique angles of
incidence the displacements in the x- and z- directions due to SH waves and in the y-direction due to P, SV
and Rayleigh waves are entirely produced by P/SV-SH mode conversions. The coupling between SH and
P/SV modes appears to be much stronger for SH incident waves. For example, in the case of SH waves with
30° off-vertical angle of incidence the resulting peak vertical displacement has an amplitude close to that of
the free field. This characteristic has also been observed in the case of a canyon.'® [t is interesting to note that
for SV waves with 60° angle of incidence and Rayleigh waves the displacement in the x-direction along
section B is very insensitive to the presence of the vailey.

Increasing the dimensionless frequency to Q = 0-75, the surface displacements at section B for incident P,
SV. SH and Rayleigh waves with azimuthal angle ¢ = 0° are shown by Figure 4. Comparisons between
Figures 3 and 4 reveal a considerable difference in amplification patterns for all the incident waves. In
particular, a striking difference takes place in the magnitude of the displacement in the x-direction. In
contrast to the results of Figure 3, here the displacement in the x-direction is amplified the most {or the case
of SV waves with 60° off-vertical angle of incidence and Rayleigh waves. Furthermore, it is evident from
Figure 4 that increase in frequency has caused a substantial increase in P/SV and SH mode coupling. For
dimensionless frequency Q = 0-5, the peak amplitude of displacement in the x-direction due to incident SH

Figure 4. Amplitude of surface displacement spectra for a hemispherical valley at section B and incident P, SV, SH and Rayleigh waves.
R=1Q=075¢=0"
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waves is less than 50 per cent of the free field, but for Q = 0-75 this amplitude is more than twice that of the
free field.

Response of semi-prolate valleys

To study the effect of the valley shape, two types ot semi-prolate basin are considered. Type 1 valley has a
major to minor axis ratio (a/b) equal to 1-5 and for type 2 valley this ratio is 2. Clearly, these geometries are
non-axisymmetric. Figure 5 displays the surface response at section B for different incident waves for type |
valley. The azimuthal angie of incidence is 0°. The displacement in the x-direction due to incident SV and
Rayleigh waves exhibits a remarkable increase in peak amplitude compared to the case of a hemispherical
valley ( Figure 3). The coupling between SH and P/SV modes also appears to be stronger than in the case of a
hemispherical valley. For the same type of valley, Figure 6 shows the surface responses at section A for
different incident waves with azimuthal angle of incidence equal to 90°. The amplification pattern for incident
P and Rayleigh waves appears to be similar to the case depicted by Figure 5. However, a notabie difference is
observed for the cases of incident SV and SH waves. Namely, for incident SV waves with an off-vertical angle
of incidence of 30° {critical angle), the change in azimuthal angle from 0° to 90° (Figures S, 6) has reduced the
amplification of the predominant motion by 40 per cent at the centre of the valley. For incident SH waves
with off-vertical angles of 30° and 60°, this effect is reversed. It should be emphasized that the differences
between the results for Figures 5 and 6 occur because of the non-axisymmetric nature of the valley.

For type 2 valley, surface responses at section B for incident SH and Rayleigh waves with azimuthal angie
of incidence ¢ = 0° are similar'® to the corresponding cases for type 1 valley. However, for incident P and SV
waves the amplitudes of motion in the x-direction for type 2 valley are much smaller than the ones for type 1
valley (the results are omitted for the sake of brevity).

107 P 107 sV
600 1 o b
1 A N - -
0 7 — /—\\ o A
107 16 /'\\
- , \
30° 1 ,’ \\
] VRN / \
—p— V4 \ — ‘\‘/ (g
0 . az v )
10: 10 -~ 10
/N
0° < / \
1 Foo
/ \
| -/ N
[v] ¥ Y yrme—_Y o v T 0
-2 2
10 R

-
~

'
=7 N
) -’YA‘/_\‘--Y
-2 2

Figure 5. Amplitude of surface displacement spectra for type { valley at section B and incident P, SV, SH and Rayleigh waves. Major
sxisa= -5, minoraxisdb= |-, Q= 05, ¢ =0°
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Figure 6. Amplitude of surface displacement spectra for :ype [ valley at section A and incident P, SV, SH and Rayleigh waves. g = |5,
b=1 N=05 ¢ =90

Comparisons with two dimensional models ‘

Since computational efforts are greatly reduced for two dimensional approximations, it is beneficial to
use two dimensional models whenever applicable. Therefore, it is of great interest to examine the validity of
two dimensional approximations for some three dimensional models. Clearly, for the off-azimuthal cases
such comparisons are inadequate since the coupling between P/SV and SH modes cannot be accounted for
by using two dimensional models. Here, the azimuthal response of section B for several valley shapes
including hemispherical and the type 1 and 2 semi-prolates are compared with the corresponding responses
of a two dimensional circular valley. For a plane strain mode! the responses of circular valleys have been
investigated by Dravinski and Mossessian* and the accuracy of their results has been verified through several
independent studies.”* '* Figure 7 shows the surface responses for horizontal (the y-direction) and vertical
displacements due to incident P waves for different types of valleys. The three dimensional results correspond
to section B with azimuthal angle of incidence equal to —90°. The two dimensional results appear to be in
good agreement with type | and 2 semi-prolate valleys, and in fair agreement with the case of a hemispherical
valley. This agrees with the physical interpretation of the results. As the dimension of the valley in the x-
direction increases, the three dimensional model approaches its two dimensional counterpart.

For incident SV and Rayleigh waves the observed similarities and disagreements with the two dimensional
results are of the same nature as for the case of incident P waves and therefore are omitted to reduce the
number of figures. It should be noted, however, that as the valley becomes more elongated in the x-direction
the approach to two dimensional results appears to be particularly uniform for non-predominant compon-
ents of motion,
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Figure 8 shows the surface responses for incident SH waves. For this case the three dimensional results
have significant disagreements with the two dimensional ones for all three types of valley, although the
differences are still less pronounced for the type 2 valley compared to hemispherical and type | valleys. These
results suggest that the validity of two dimensional approximations is strongly dependent on the type of
incident wave under consideration. For instance, the resulting displacement at the centre of the valley due to
vertical incident SH waves is about two to three times (depending on the shape of the valley) greater than the
one for the two dimensional case, whereas for the case of incident P wave (Figure 7) the difference for the
predominant motion is at most 20 per cent. For the same case, it can be observed that the disagreements with
the two dimensional results are greater for type 1 valley compared to the spherical valley, despite tne fact that

, SH (u)
10 N

Figure 8. Comparison of surface displacement spectra for incident SH waves (all the parameters and conventions are the same as
Figure 7)




-

AMPLIFICATION BY A THREE DIMENSIONAL VALLEY: 1 677

type | valley is more elongated in the x-direction. These observations indicate that, as the dimension in the x-
direction gets longer, the response may not approach the two dimensional results uniformly.

Increasing the dimensionless frequency to Q = 0-75, Figure 9 displays the surface responses for mcident P,
SV and SH waves (for the sake of brevity the non-predominant motions due to P and SV waves are omitted).
It is evident that increase in frequency has caused a considerable increase in discrepancies between two and
three dimensional results. For dimensionless frequency Q = 0-5 the results for the spherical valley (Figure 7)
are in fairly good agreement with the ones for the two dimensional case; however for dimensionless frequency
Q = 075 the differences are very significant. This observation demonstrates that a two dimensional

SH (u) y \

10

Figure 9. Comparison of surface displacement spectra for predominant components of motion due to vertical incident P, SV and SH
waves, £2 = 075. Dash and solid lines represent the results for spherical and type | valleys at section B, respectively. The open circles
denote the results for a2 two dimensional semi-circular valley
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approximation of a three dimensional model may produce reasonable results at certain frequencies but
become completely inadequate for Some other frequencies.

Comparisons with three dimensional responses of cylindrical valleys

Recently Khair er al.'* have considered an interesting model in which the valley is assumed to be in the
form of an infinite cylinder and is subjected to a three dimensional incident wave field. This model can
account for certain three dimensional features (such as coupling between P/SV and SH modes) and at the
same time it retains the computational efficiency of the two dimensional modelling. It is of interest to see how
well the resuits of this model agree with the ones for the semi-prolate valleys. Clearly, if the major axis of the
semi-prolate valley is very large compared to its minor axis, the results should be similar to the ones for a
cylindrical valley at stations away from the edges in the x-direction. Figure 10(a) shows the surface responses
for semicircular cylindrical!* and semi-prolate valleys (types 1 and 2) due to incident P waves. The three
dimensional responses correspond to those at section B. The azimuthal and off-vertical angles of incidence
are 0° and 30° respectively. It should be noted that the semi-circular section of the cylinder coincides with
section B. It is apparent in Figure 10(a) that reasonable agreements between the three dimensional and
cylindrical models exist for the displacements in the y- and z-directions. However, for the displacements in
the x-direction there are significant differences between the results. Namely, at the centre of the valley the
three dimensional models predict large amplification, but for the cylindrical valley this component of motion
is de-amplified.

Figure 10(b) shows the surface responses for incident P waves with off-vertical angle of incidence equal to
60°. The disagreements between the results have a surprisingly different nature from the ones for the case of
6 = 30° [Figure 10(a)]. Here the major discrepancies occur for the y- and z-components of displacements. In
particular, for the vertical displacement the differences between three dimensional and cylindrical vaileys are
remarkable. )

In the cases of incident SV waves the disagreements between the amplification patterns are not as great as
the ones for incident P waves; however, pronounced differences for non-predominant components of
dispiacement are still present (the results are omitted for the sake of reduction in the number of figures).
Overall, these observations suggest that the approximation of fully three dimensional valleys by such a model
may in some cases lead to very misleading results.

SUMMARY AND CONCLUSIONS

Scattering of steady state plane P, SV, SH and Rayleigh waves by three dimensional dipping layers of
arbitrary shape has been investigated by using an indirect boundary integral equation method. Numerical
examples for different parameters such as geometry of basin, and nature and frequency of the incident wave
are presented.

Systematic comparison between three dimensional and corresponding two dimensional models demon-
strate that the validity of a two dimensional approximation for a given valley shape may be affected strongly
by changes in azimuthal angle of incidence, type of incident wave and frequency. The discrepancies of two
dimensional modelling appear to be much more pronounced for the case of incident SH waves. Furthermore,
it is shown that, as the valley becomes more elongated in the direction perpendicular to the observation
plane. the approach to two dimensional results may not take place uniformly. Another important feature of
the results is the existence of strong coupling between P/SV and SH modes, which has no correspondence in
two dimensional models. Such off-azimuthal mode conversions are particularly strong for incident SH waves.
This characteristic has also been observed for the case of a canyon.!®!? Over all, these features indicate the
importance of the three dimensional modelling for studying the seismic response of dipping lavers of
arbitrary shape.

It shouid be pointed out that the method can be applied to the case of a layered valiey embedded in a
layered medium. However, this would require the use of Green's functions for the layered medium (e.g. Apsel
and Luco;?° Kundu and Mai?!). For two dimensional cases Dravinski and Mossessian* have demonstrated
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the capability of the method for modelling valleys with several dipping layers embedded in a uniform half-
space. Other alternatives such as hybrid techniques appear to be very promising for handling very complex
media (e.g. Mossessian and Dravinski;™ 22 Khair et al.!'¢ %),
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AMPLIFICATION OF ELASTIC WAVES BY A THREE
DIMENSIONAL VALLEY. PART 2: TRANSIENT RESPONSE

TOMI K. MOSSESSIAN® AND MARIJAN DRAVINSKI
Department of Mechanical Engineering. University of Southern California, Los Angeles. California 90089, U.S.A.

SUMMARY

Transient response of three dimensional dipping layers of different shapes subjected to incident P, SV, SH and Rayleigh
waves is investigated. The time domain response is constructed from steady state solutions through the Fourier synthesis.
An indirect boundary integral equation method is applied to calculate the required steady state solutions. The material of
the half-space and the layer is assumed to be linear, weakiy inelastic, homogeneous and isotropic.

Numerical results show that the maximum amplification of motion is strongly dependent upon the type of incident
wave, the shape of the basin and signal frequency. The change in the shape of the valley from hemispherical to semi-
prolate causes a significant increase in the amplitude of surface waves near the edges; however, the maximum
amplification of motion near the centre of the valley decreases. This phenomenon is especially apparent for the case of an
incident P wave. In comparison to the corresponding two dimensional responses, the amplitude of motion near the centre
of the valley is in general higher for three dimensional models.

INTRODUCTION

The literature review in the companion paper® showed that there are only a few studies that have considered
scattering of elastic waves by three dimensional dipping layers. An even fewer number of investigations have
addressed the transient responses of three dimensional basins. Among these, only the work of Lee and
Langston? discusses the time domain solution in studying scattering of P and SH waves by a circular
(axisymmetric) three dimensional basin using a ray technique. However, this solution is limited to a high
frequency range.

In this paper, the time domain response of three dimensional dipping layers of different shapes is studied.
The present work is an extension of the study by Mossessian and Dravinski,' in which steady state scattering
of elastic waves by three dimensional dipping layers was considered. The transient response is constructed
from the steady state solutions through the Fourier synthesis. Incident P, SV, SH and Rayleigh waves are
considered. Surface response for several basin shapes, angles of incidence and signal frequencies is presented.
The differences and similarities in wave propagation patterns with respect to responses of two dimensional
models are discussed.

METHOD OF SOLUTION

The time domain solutions are obtained through the fast Fourier synthesis of steady state responses
calculated at discrete frequencies. The indirect boundary integral equation method developed in the
companion paper by Mossessian and Dravinski! is used to caiculate the steady state results. Incident P, SV,
SH and Rayieigh waves are assumed. The incident signal is in the form of the Ricker wavelet® defined as

u(t) = (r)'2/2(a* - 0-5)exp( — a*) (1

a = nt/t,

*Presently at Structural Research and Analysis Corp. 1661 Lincoln Blvd. Suite 200, Santa Monica, CA 90404, US.A.
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where ¢, is the predominant period of the wavelet. The Fourier transform of this wavelet has the following
form:

Uiy = —rdw*8ndexp(— o't 4n°) )

Clearly, U(w) has its maximum at &, = 2z.t, and it decreases very rapidly at frequencies larger than w,.
For all the resuits presented here the frequency domain calculations are done for the range 0 < w < 3-5w, at
equal increments of frequency. For this range 32 to 50 sample frequencies are used to calculate the transient
response.

NUMERICAL RESULTS AND DISCUSSIONS

Spherical and semi-prolate basins considered in this analysis have been defined in equations 10 (a—) of the
paper by Mossessian and Dravinski.' To reduce the number of figures only the surface responses for cross
sections y = 0 and x = 0 are presented and they will be referred to as sections A and B, respectively. The
conventions for azimuthal and off-vertical angles of incidence are the same as the ones used in the companion
paper.! Throughout the calculations the shear wave velocities of the basin and the half-space are assumed to
be equal to one-half and. one, respectively. The Poisson ratio v for all materials is chosen to be 1/3. For
convenience a non-dimensional time r = 18,/b is introduced. Therefore the values of r, throughout the paper
correspond to non-dimensional predominant periods. It should be noted that the response wouid remain the
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Figure 1. Surface responses (x, w) for a hemispherical valley of radius R = | at equaily spaced stations along section A, for a vertics!

incident P wave. ¢ = 0°, § = 0°, 7, = 4. Material properties of the haif-space and the valley: jup = §, = I'. 29 = 2, 4, = 1/6, 8, = 05,

a, = 1-,Q, = Q, = 100 (ail material properties are kept the same). The tickmark on the right hnndsideochhﬂgunmthcnhfor
the unit magnitude of displacements. * and r, denote dimensioniess time and predominant period. respectively
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same for any valley of the same shape (same a’b ratio) as long as the non-dimensional time, shear wave
velocity ratio §,/B, and Poisson ratios are the same.

Hemispherical valley

Because of the axisymmetric nature of the basin the azimuthal angie of incidence ¢ is taken to be equal to
zero for all the results. Surface responses at section A due to an incident P wave are shown in Figure 1. The
predominant period of the signal 7, is 4, which corresponds to the fundamental period of a P wave for a flat
layer assumption at the centre of the valley (one-half that of an S wave). In comparison to the corresponding
results for two dimensional valleys* the peak amplitude of predominant motion is about 50 per cent higher
for the three dimensional case. Nevertheless, near the centre of the basin the wave propagation patterns,
namely the arrivals and duration of surface waves, are similar to those of a semi-circular valley. However,
near the edges, the amplitudes of the surface waves are smaller than the ones for the two dimensional case.
This phenomenon is due to the fact that for a spherical type basin the focusing of the surface waves toward
the centre and their spreading away from the centre are much stronger than in the two dimensional case. The
maximum amplification occurs for the second peak of the Ricker wavelet, which is mainly due to constructive
interference of surface waves and the refracted incident wave. The results for a predominant period of t, = 7
have also been calculated (to reduce the number of figures these results are omitted). The main difference
between these results and the ones for a lower period (z, = 4) is that the surface waves compietely disappear.
This is not surprising since the fundamental period is considerably longer than the fundamental period of an
equivalent horizontal layer.

Figure 2 shows the surface responses at section A for a vertical incident SV wave with predominant period
7, = 4. Similar to the two dimensional cases,*~¢ the amplitude and duration of surface waves are much
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Figure 2. Surface responses (u. w) for a hemispherical valley at section A for vertical incident SV wave. 9 = 0°, = (0*, t, =4 R |
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Figure 3. Surface responses (u, w) for a hemispherical valley at section A for incident SV wave with ¢ = 0* and § = 30°. tr, =4 R = |

higher for an incident SV wave than the case of an incident P wave (Figure 1). However, the maximum
amplification of motion for the incident SV wave is much smaller than the case of the incident P wave. In
comparison with two dimensional circular valleys, the peak amplitudes of the predominant motion are about
the same but the amplitude of the surface waves is higher for the three dimensional case. The phase velocity of
the surface waves is about 0-85 (clearly displayed in the non-predominant component of motion), which
compares well with the first higher mode of the Rayleigh waves. Increasing the predominant period of the
incident signal to 7 resuits in a large reduction of surface wave amplitudes (these resuls are omitted for the
sake of brevity).

ot it e For incident SV waves with off-vertical angle of incidence 8 = 30° (critical angle) the surface responses at
e section A are shown in Figure 3. Here the location of the peak amplitude is shifted to the right of the centre of
the valley and it corresponds to the second peak of the Ricker wavelet. Considering the phase velocities of the
surface waves (apparent in the vertical component of motion) and refracted incident wave, it appears that the
resulting amplitude of the second peak is mainly due to constructive interference of the reflected surface
waves traveiling towards left and the refracted incident wave (similar observations have been obtained in the

case of two dimensional valleys®).
Figure 4 shows the surface responses at section A due to incident SH waves for three different off-vertical
angles of incidence. Because of symmetry, the only non-zero component of motion at this section is in the y-
direction. It should be noted that for the case of vertical incidence the response of the valley is the same as in
the case of the vertical SV wave, provided that the proper switching of the observation planes and the non-
zero displacement components is taken into account. Hence, the observed motion at the centre of the valley is
exactly the same as the one shown in Figure 2. It is evident from Figure 4 that the changes in the off-vertical
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Figure 4. Surface responses (o] for a hemispherical vailey at section A for incident SH wave with ¢ = 0° and ¢ = 0°, 30°, 60°. 1, = 4,
R=1

angle of incidence have not affected the peak amplitude of motion; however, its location is shifted to the right
side of the centre of the valley. Furthermore, it appears that the duration of motion for the case of § = 60° has
slightly increased. Owing to the complexity of the motion it is hard to analyse the contribution of Love waves
to the observed surface waves.

Figure 5 shows the surface responses at section A due to incident Rayleigh waves. For this case the
amplitudes of secondary surface waves generated from the right edges of the valley are larger than the peak
amplitude of the refracted incident wave. This is especially apparent for the vertical component of motion.
The phase velocities of successive surface waves with dominant vertical motion. generated from the right
edges of the valley, are lower than the ones observed for other incident waves.
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Figure 5. Surface responses (u, w) for a hemispherical valley at section A (or incident Rayleigh wave with ¢ = 0°. tr, =4, R= |

Figure 6 shows the surface responses at section B for an incident P wave with off-vertical angle of incidence
0 = 30° (off-azimuthal case). For this case all three components of displacements are non-zero. The
displacement component in the y-direction is totally due to P/SV to SH mode conversions. It is interesting to
observe that the peak amplitude of the y-component of motion is comparable with the free-field amplitude of
the horizontal displacement in the x-direction. The rather low phase velocity for this component of motion
may suggest the presence of Love waves. It should be mentioned that the resulting amplitude in the y-
component of motion for corresponding cases of incident SV and Rayleigh waves is about the same as the
ones for incident P waves (to reduce the number of figures these results are omitted). However, for incident
SH waves the resulting dispiacements in the x- and :z-directions, which are products of SH to P/SV mode
conversions, are rather large.” This agrees well with the observations made for the frequency domain results.
namely that the off-azimuthal mode conversions are much stronger for incident SH waves than for the other
three types of incident wave.

Semi-prolate valley

A semi-prolate basin with its major to minor axis ratio equal to two is considered. Computational efforts
needed for this geometry are much higher than what is required for the hemispherical basin. This is mainly
due to the fact that the length of this basin in the x-direction (the major axis) is twice that of the hemispherical
basin. Hence, for the same incident signai the dimensionless frequency with respect to the major axis of the
semi-prolate is twice that of the hemispherical case. To keep the computational efforts in an affordable range
only a few results for shorter periods (t, = 4) are obtained. Figure 7 shows the surface response for vertical
components of motion at sections A and B for a vertical incident P wave with predominant period r, = 4.
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Figure 6. Surface responses (u, o, w) for a hemispherical valley at section B for incident P wave with ¢ = 0° and 6 = 30°. t,=4,R=]

The maximum amplification of the second peak of the Ricker wavelet is considerably smalier than the one for
the corresponding case of the hemisphericai basin (Figure 1). This peak amplitude occurs at a later time for
the prolate valley than the hemispherical valley. In contrast to the case of a hemispherical valley, here the
surface waves generated from the surrounding edges of the prolate have to travel different distances to reach
the centre of the valley. Thus the focusing effect near the centre is not as intense as in the case of the
hemispherical valley. Near the edges of section B, however, the amplitudes of the surface waves are larger
than those for the hemisphericai valley, and they have a closer resemblance to the corresponding two
dimensional results. The differences in surface wave propagation pattern for the two sections A and B are
quite apparent (for the hemispherical case they would be the same). At later times the amplitudes of surface
waves near the edges of section A (longer section) are much larger than those for section B; therefore the




688 T. K. MOSSESSIAN AND M. DRAVINSKI

.

s
&
|

&K
-
)
|

R 3

\

-1

|

4
-

1

22
"

|

e

—
o
[
o

30
time
r(0%)

Figure 7. Surface responses (w) for semi-prolate valley at sections A and B for incident Pwave with ¢ = 0°and 0 = 0°.a= 2, b= 1,
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duration of motion appears to be longer. It should be mentioned that for incident P waves with
predominant period z, = 7 hardly any surface waves can be observed.’

Figure 8 shows the surface responses at section A for a vertical incident SV wave with azimuthal angle of
incidence ¢ = 0°. The predominant period t, is 7. In contrast to the corresponding case for incident P waves
(not shown here’), the surface waves are quite visible here and the duration of motion is much longer.
Changing the azimuthal angle of incidence of ¢ = 90°, the results at section B are depicted by Figure 9. The
resulting amplitude and duration of surface waves are much lower than in the case shown by Figure 8.
However, in comparison with the corresponding case of the hemispherical valley, the amplitudes of the
surface waves are larger. It should be emphasized that the observed differences between the results of
Figures 8 and 9 are due to the non-axisymmetric nature of the basin.

Figure 10 shows the surface responses at sections A and B for vertical incident SH waves with azimuthal
angle of incidence ¢ = 0° and predominant period t, = 4. It should be noted that the results for section B in
Figure 10 are the same as those for vertical incident SV waves with azimuthal angie of incidence ¢ = 90°.
Comparing the results for section B with the ones for the hemisphericai valley (Figure 2), the peak amplitudes
are about the same. However, owing to the different arrival times of the surface waves, the wave pattern at
later times is slightly different. Comparisons of the results for sections A and B show significant differences in
wave propagation pattern at later times. For section A the propagation of the surface waves across the valley
appears much more clearly than it does for section B. Also the duration of motion near the edges is much
longer for section A than for section B. It should be pointed out that the slight violations of causality at the
initial part of the response (more apparent for section A) are mainly due to numerical inaccuracy at higher
frequencies.
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SUMMARY AND CONCLUSIONS

Using a boundary integral equation method and Fourier synthesis the transient response of three dimen-
sional valleys of different shapes is investigated. Incident P, SV, SH and Rayleigh waves have been
considered.

The nature of observed differences with the corresponding two dimensional responses appears to be highly
dependent upon the shape of the basin and the type of incident wave under consideration. The amplitude of
motion near the centre of the valley is in general higher for three dimensional basins; this is especially
apparent for the case of a hemispherical valley subjected to a vertically incident P wave. However, near the
edges of the valley the amplitude of motion decays faster for three dimensional basins than for two
dimensional ones. Another important feature of the results is that change in the shape of the valley from
spherical to semi-prolate causes a considerable increase in the amplitude of surface waves, especially near the
edges of the vailey. The maximum amplifications occurring at the time of direct arrivals decrease, since the
constructive interferences of refracted incident wave with the surface waves are less focused for the semi-
prolate than for a hemispherical basin.

Because of the complexity of the motion in the examples studied here, it is difficult to analyse the specific
contributions of different modes of Love and Rayleigh waves in the total motion. From the high phase
velocity of the surface waves it appears that Rayleigh waves have been dominant in surface motion for the
class of examples considered here. In order to analyse different surface wave packets, one needs to consider
more clongated basin geometries and short period incident signals. Such an analysis would require
considerable computational efforts which are beyond the scope of the present paper.
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SUMMARY

Scattering of elastic plane waves by three dimensional non-axisymmetric multiple dipping layers embedded
in an elastic half-space is investigated by using a boundary method. The dipping layer is subjected to
incident Rayleigh waves and oblique incident SH, SV and P waves. For the steady state problem, spherical
wave functions are used to express the unknown scattered field. These functions satisfy the equation of
motion and radiation conditions at infinity but they do not satisfy the stress free boundary conditions on the
surface of the half-space. The boundary and continuity conditions are imposed locally in the least-square
sense at points on the layer interfaces and on the surface of the half-space. The transient response is
constructed from the steady state solution by using Fourier synthesis.

Numerical resuits are presented for both steady state and transient problems. Steady state problems
include solutions for two non-axisymmetric dipping layers in the form of a prolate. Transient responses are
presented for one and two dipping layer models subjected to incident wave signals in the shape of a Ricker
wavelet. It is shown that change in azimuthal orientation of the incident wave may significantly change the
surface response of the dipping layer. For the transient problem, response comparison of one and two
dipping layers indicates that the addition of an extra layer may also compietely change the response
characteristics of the alluvium. In particular, the delay in arrival of much larger amplitude surface waves by
two dipping layers in comparison with other geometrically compatible models demonstrates the importance
of the detailed three dimensional modelling of layered irregularities.

INTRODUCTION

Details of scattering phenomena near subsurface inhomogeneities are of great importance in

many branches of science. The theory of scattering of elastic waves is widely applied in non-

destructive testing, in studying the behaviour of composite materials under dynamic loading, in

' delineating buried geologic formations in petroleum exploration, and in investigation of strong

TR A ground motion amplification in seismology and earthquake engineering.!- 2 Although the subject

SR of numerous studies in the past, the analytical complexity of the problem and numerical

difficulties in impiementing computationai techniques have been major obstacles in studying

Cliesnit realistic models such as three dimensional probiems.® With recent advances in computational
techniques it is possible now to investigate these type of problems in more detail.

Among the earlier studies of three dimensional scattering of elastic waves, the works of Day,*

Apsel,’ Sanchez-Sesma® and Lee’ are of special importance. Day* used the finite clement

technique to study scattering of elastic waves by an axisymmetric sedimentary basin. Apsel® used

a boundary integral equation (BIE) method to study soil-structure interactions for axisymmetric

scatterers. Sanchez-Sesma® and Lee’ used wave expansion techniques to solve similar probiems.

Recently, Niwa and Hirose® formulated a BIE method to soive the scattering problem of elastic
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waves by a non-axisymmetric cavity or crack in a three dimensional half-space. Eshraghi and
Dravinski® '° used the wave expansion technique to study scattering of elastic waves by non-
axisymmetric near surface irregularities. Recently, Jiang and Kuribayashi®® investigated three
dimensioral resonance of axisymmetric sediment-filled valleys. All the papers cited so far dealt
with steady state problems. Lee and Langston'? extended the problem to include the transient
solution for an axisymmetric scatterer using the ray method, while Sanchez-Sesma et al!3?
considered a similar model through the wave function expansion approach. Still, at the present
time the transient solution for scattering of elastic waves by general three dimensional irregu-
larities has not been fully developed. The main reason for that is the prohibitive amount of
computation required for solving the problems of interest with non-axisymmetric characteristics.
For that reason, a boundary r.ethod is used in the present study to formulate the steady state
problem for non-axisymmetric irregularities, from which the transient solution is constructed by
using Fourier synthesis. The method utilizes the wave fuaction expansion technique which does
not require evaluation of the Green functions. These wave functions can be evaluated easily,
making it feasible to approach transient probiems for more generai three dimensional modelis.
For a more detailed review of the literature on scattering of elastic waves, the reader is referred to
recent papers by the present authors.!:?

STATEMENT OF THE PROBLEM

The geometry of the problem is depicted by Figure 1. The problem model consists of an elastic
half-space which contains a finitc number of elastic dipping layers of arbitrary shape. The layer
interfaces are considered tc be smooth, without sharp corners. Throughout this paper subscript j
corresponds to cither layer domains D, (j =0, 1, ..., R)or to the interface C,(j = 1,2,...,R).
Domain D, denotes the half-spac: while C, denotes the interface between the half-space and the
first layer, etc. In addition, C, corresponds to the surface z = 0 of the dipping layer and the half-
space. The material of the medium is assumed to be linearly elastic, homogeneous and isotropic.
The half-space is subjected to incident plane SH, SV, P or Rayleigh waves. The steady state
equation of motion in a three dimensional medium, in the absence of body forces, is defined in
terms of the displacement potentials by

(V2 + B))0;(x, @) = 0 (m
(VI+kH)¥(x,@)=0 @
o (V2 + kD) z(x @) = 0 3

RV xeD;, j=0,1,...,R

where x is a position vector, ®;, ¥; and x; are the three displacement potentials for the jth layer,
h)( = w/a;) and k,( = w/B;) denote the pressure and shear wavenumber, respectively, 2, and f; are
the pressure and shear wave velocities, respectively, w is the circular frequency, and V2 denotes
the Laplacian in spherical co-ordinates. A system of unit basis {e,, ¢,, ¢, } is defined for spherical
co-ordinates (r, 8, ¢) according to Figure 1. For the same co-ordinate system the displacement
vector u, can be expressed in terms of three displacement components u,, 4, and u, according to'*

0=Vo, +V(r'¥,) x e + 1,V xVx(ye,) @
xeD;, j=0,1,...,R '
where [ is a scalar factor to give the potentials the same dimension.
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Figure 1. Problem mode}

Boundary conditions on the surface z = 0 of the dipping layers and the half-space are given by
Ore; ™ Opey "-&ul =0 ®)

o-g(z-m. xeC,, j=0,1,...,R

where 0,9, 0oy; and d,,; are components of the stress tensor. Perfect bounding on each layer
interface requires continuity of displacement and traction fields according to

0 (% @) = e (X, ) ©
T (x @) = T} (x, @) M
xeC;, j=1,2,...,R

where w and T are the displacement and traction vectors, respectively. Superscript + (—)
denotes that the incerface is being approached [rom the outside (inside). Expressions for the
components of displacement field and stress tensor in terms of the displacement poteatials can be
found in the literature.!*

For the steady state problem the incident field consists of plane harmonic Rayleigh waves or
oblique incident SH, SV or P waves. For siowness vectors within the xz-plane, incident fields are
defined in previous works by the present authors.! -3 For slowness vectors located outside the xz-
plane, the corresponding incident fleld is obtained through rotation about the z-axis. This
completes the statement of the problem. Solution of the problem is considered next.
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SOLUTION OF THE PROBLEM

As an incident wave strikes interface C,, it is partially scattered back into the half-space D, and
partially transmitted into layer D, . This process continues from one layer to another as the waves
propagate throughout the layered medium. Consequently, the wave ficld in the half-space consists
of the free-field and the scattered wave field, while the wave field inside each dipping layer consists
of the scattered wave field only. The dispiacement fieid can be written in the following form:

u, = of + u} ®)
9 =u}, xeD; j=1,2...,R 9

where superscripts s and ff denote the scattered field and free-field, respectively. Scattered wave
fields in this model can be expressed as a linear combination of the spherical wave functions.'*
For the half-space, scattered wave fields for the displacement wave potentials are defined
according to

O =3 5 a%h®(hor) Pricosb)cosmd

AnNO m=Q
+ bR A (hor) PT (cos 0)sin mo (10)
m<nM<N,xeD,

=3 3 aTeh®(kor) Pr(cos ) cosm
1

A%l ms
+ bashiP(kor) P7(cos 8)sinmé an
o msn, M N, xeD,
N M
o= 3 3 a2 (kor) PT(cos)cosme
+ b b (kor) PY(cos 8)sin mg (12)

msnM<N,xeD,
For the intermediate layers according to
: ) N M
@ =) Y caihiP(h;r)PT(cos6)cosme

a0 m=0
+ d2% K2 (hyr) PT(cos §)sinme
+ €2 (hyr) PR(cos 6) cos m
+ [ 2 i (hyr) PY(cos 8)sinme (13)
m{aMSN,xeD,jm=l,...,R-1

W= 5 3 CLKP(kr) Pricos)cosm

Rm ]l m=-

+ ALK (k;r) P2(cos 6) sinmé

+ LKV (k;) P7(cos 6) cos mé

+ [T (kyr) P2(cos 6) sinme (14)
m<nM<N,xeD,j=1,...,R=1
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N M
0=Y 3 cXh?®(k;r) Pr(cosf)cosmo

n=] ome]
+ dZ B (k;r) Py(cos 8)sinmg
+ eZL ki (k,r) PR (cos 0) cos m¢
+ [ 50" (k,r) PY(cos 8)sin mg (15)
m<nM<N,xeD,j=1...,R-1

and for the innermost layer specified by

N M
2= Y Y gonj.(har) P2 (cos§)cosme

A=0 m=0
+ [omja(hgr) P7(cos 8) sinmo (16)

m<nM<N,xeD,
M

N
2= 2 2 gudja(ker) P2 (cos 6)cos mo

A=) me}
+ I3%ja(kxr) P7(cos 0) sin mg (1
m<n,M<N,xeD,

N M
= .Z; .2-:1 g2 julkgr) P7(cos ) cosmo

+ IRjskgr) P3(cos 8) sinmg (18)
m<n,MN,xeD,

where A and A% are spherical Hankel functions of the first and second kind, respectively, j, are
spherical Bessel functions of the first kind, P7(cos 8) are associate Legendre polynomials,!® a__ to
I, are unknown coeflicients, and N and M are the orders of expansions. The wave functions in
equations (10) to (18) are solutions of the equations of motion (equations (1)—(3)). The scattered
wave field within the half-space D, (equations (10)~(12)) consists of outgoing waves only, thus
satisfying the radiation conditions at infinity. Scattered waves within the layers D, to D, .,
(equations (13)-(15)) incorporate both incoming and outgoing waves, while scattered waves
within the innermost layer D, (equations (16)—(18)) consist of standing waves only. It can be seen
that these wave functions do not satisfy the stress free boundary conditions on the surface z = 0 of
the valley and the half-space. These conditions must be imposed locally.

Once the scattered field is expressed as a double series of wave functions according to equations
(10) to (18), it is necessary to determine the unknown expansion coefficients. Substitution of the
scattered wave field into the boundary conditions (equation (5)) on the surface z = 0 of the
dipping layer and the half-space at L, points and into the continuity conditions (equations (6) and
(7)) on the surface of layer interfaces at L,(j = 1,. .., R) points results in a system of linear
equations

' Ga=f (19)

where matrix G and vector f are known and vector a contains all the unknown coefficients. Using
QR decomposition, the system of equations (19) is then solved in the least-square sense.'’

Once these coefficients are found, the displacement and stress fields can be evaluated through-
out the elastic medium.
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This concludes the steady state solution of the problem. Corresponding transient response is
evaluated through the Fourier synthesis.!- !¢

NUMERICAL RESULTS

The numerical results are presented for steady state and transient responses of non-axisymmetric
one and two dipping layer models subjected to oblique incident SH, SV and P waves.

Geomerry of the layers
For two dipping layers the model geometry is in the form of semi-ellipsoids defined by

C,: a—§+3§+a=l, z>0 (20)
i xz y2 zZ
C,: Ff‘l’b—%#‘ESl. z>0 1)

where a, and b, are the principal axes of the ellipsoids along the x-axis, a; and b, are the principal
axes along the y-axis, and a, and b, are the principal axes along the z-axis. For the one dipping
layer model only interface C,, defined in equation (20), is present. Resuits are shown for spherical
dipping layers (a, = a; = ay, b, = b, = b,) and prolates (a, # a, = a,, b, # b, = b;). There are
some advantages associated with these choices of model geometry. Prolate dipping layers possess
non-axisymmetric features of a general three dimensional model which facilitate comparison with
existing two dimensional modeis by extending the prolate in one direction. This serves also as a
test of numerical results since the authors are not aware of any solutions at the present time for
scattering of elastic waves by multiple dipping layers in the literature. A spherical model is
considered because of its simplicity and aiso for comparison with sumerical resuilts for non-
axisymmetric geometries.

Conventions

The slowness vector of the incident wave is specified by two angles, an azimuthal angle of
incidence @, and an off-vertical angle of incidence 8, (Figure 1). A slowness plane is defined as a
vertical plane which contains the slowness vector. Consequently, the in-plane and out-of-plane
motions correspond to displacement fields with components in the slowness plane and perpendi-
cular to that plane, respectively. Throughout, u, v and w correspond to the three components of
the displacement field along the x-, y- and z-axis, respectively. All distances are normalized in
respect to the half-width of the innermost layer along the y-axis (e.g. b, for a two dipping layer
model), which is assumed to be of unit length. In addition, the following dimensioniess variables
are introduced. The shear modulus and shear wave velocity of the half-space are assumed to equal
unity. The dimensionless shear modulus, shear wave speed and pressure wave speed are denoted
by u,, B, and a,, respectively, for the jth layer. With all velocities normalized with respect to the
shear wave speed of the half-space and all distances with respect to the half-width of the
innermost layer along the y-axis, the time variable ¢ appears in dimensionless form as well A
dimensionless frequency Q is defined as the ratio of the total width of the outermost dipping layer
along the y-axis to the waveiength of the incident shear wave (Q = 2a,/1'*).
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Steady state results

In the absence of any available solution in the literature for the scattering of elastic waves by
two three dimensional dipping layers, the best alternative to test the proposed technique is
through comparison with the results of compatible two dimensional models.!*? By assigning
relatively large values to the principal axis of the prolates in the direction perpendicular to the
slowness plane, it is expected that, for the incidences with slowness vector in the yz-plage, the
response of the dipping layer for stations along the y-axis resembles that of a similar cylindrical
model. Figure 2 displays the results of a comparison between these two models for an incident SV
wave with slowness vector lying in the yz-plane. The geometry of the models cut by the slowness
plane is shown at the bottom of the figure. Results are presented for a vertical and an oblique
incidence. It is apparent from these results that a strong similarity exists between the responses of
the two models. Therefore, this served as a verification of the results. Another verification of the
method is through the zero scattering test. Namely, by assuming material properties of the layers

. ¢:-90°
e
.‘?— II \\
2 dN
44 1
g ! \
£ £ o,
g 1 “&—.AQ‘, .-f - a2
—% ™ a’.\!—-—
o y

Figure 2. Comparison of the surface displacsment field of a prolate typs two dipping layer model (dashed lines) with those

of a compatibie cylindrical two dipping layer modei? (solid dots) for stations along the y-axis. For ths prolate type valley

the principal axes are (g, = 4,a; = gy = 2; b, = 2, b, = b, = 1), while for the cylindrical valley the radil are two and one.

Both valleys are subjected to the sams incident SV wave with the siowness vector in ths x3-pians (¢ = —90°). Two of~

vertical angies of incidence are considered; 6, = 0°, 30°. Throughout, x, 0 and w correspoad to the thres compoamts of the

dispiacement fisid along the axes x, y and 2, respectively. Q= ], gawfoml, gy =2 y, =04, f; =07, 2, = 14,
By = 0167, 8, =05, 0, = I M= 3 Nul L,al6) L, =L, =T2
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to be the same as those of the half-space the resulting mode] should produce no scattered waves.

Results for incident SH waves with slowness vectors lying in the yz-plane are shown in
Figure 3. The model consists of two dipping layers in the form of a prolate. For stations along the
x- and y-axis the displacement field is obtained for different off-vertical incidences. Owing to the
symmetry, the displacement fieid for stations along the y-axis consists only of the component in ®
the out-of-plane direction. This is in agreement with the two dimensional antiplane °train model

. 0:-90‘ ‘1
[ .
@ ] '
3 3
§ - * u
4 <
Py - 1_/\/‘\ L] . x 0 - e .y .
8 <6 «4 <2 0 2 4 & & -4 <) 22 -1 0 1 2 3 &
6 (s) [ (&)
3
6-
3 @
ol PPN ' o —_ —y
8 6 <4 -2 8/ 2 4 6 O “4 3 2 -1 0 1 2 3 &
6 ) 69 (e} ) ®
. 1
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8 ” M .
- u_
®
4 B 1
g N /:_‘ ,
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Figure 3. Surhad'wlmtmpﬁwd.foramwmdmhﬂmﬁ(q-&q-a,-t_b.-2.
by = by = 1) subjected to incident SH waves with the slowness vector in the yz-plans (¢ = —90°). Stations lie along
the x-axis (a)-(c) and the y-axis (d)~(). For both models: Qw05 M w3 N e L =160, L, » L, =42 yg=fy =1,
Qo m2 sy =04, By =0T, ay = 14 gy = 0167, , w05, 0, = | o




TRANSIENT SCATTERING OF ELASTIC WAVES 1017

However, for stations along the x-axis all three components of the displacement field may be
present (P- and SV-mode conversions).

It is interesting at this point to elaborate further on the numerical aspect of the steady state
solution. The method developed here is very sensitive to two sets of parameters. The first one is
the orders of expansion considered for the scattered wave field. The second one is the number of
collocation points and their locations. For the range of frequency studied here, good accuracy can
be obtained with an azimuthal order of expansion M = 3. The second order of expansion N
requires higher values. Steady state results presented in this paper generally require 5 < N < 8 for
good convergence. The number and locations of the collocation points are very important for
accuracy of the results. These points are distributed on elliptical contours on the surface of each
layer C, and C,, and also on the surface = = 0 of the half-space and the valley C,. On layer
interface C, (interface C,) these contours are equally spaced at different elevations from z = 0 to
2 = ay (2 = b;). For the range of frequency considered here generally six to cight contours are
sufficient. A total of 42 to 72 coilocation points for each of the layer interfaces is uniformly
distributed along these contours. On the surface of the half-space and the valley similar elliptical
contours following the shapes of the valley edges are considered. These contours are equally
spaced from the origin up to about twice the width of the valley at the surface of the half-space.
Fifteen contours placed this way atop the valley contained a total of 160 uniformly distributed
collocation points.

In general, the following criteria have been used to establish the convergence of the steady state
results. First, through the zero scattering test (all materials are the same) an initial number of
expansion terms and collocation points is determined. Subsequently, for the actual material of the
half-space and the layers the number of expansion terms and collocation points is increased until
the maximum difference of the surface displacement response for two successive calculations is
judged to be sufficiently small (e.g. less than 4 per cent). This concludes the analysis of steady state
numerical results.

Transient results

The incident signal is assumed to be in the form of a Ricker wavelet defined according to'®

2
1 =YX @ - 09e, 2= (1“——‘—’) @)
!P

where :, corresponds to the peak amplitude in the time domain and ¢, corresponds to tke angular
frequency w,( = 2a/t,) which is associated with the peak amplitude in the Fourier domain. The
transient response is obtained by using Fourier transform techniques.!” There are several
important parameters which are used in applying the fast Fourier transform (FFT), such as At, o),
and N,, which correspond to sampling time interval, cutoff frequency and number of samples,
respectively. In the present study the cut-off frequency w, is considered to be about two and haif
times the characteristic frequency w,,.

One dipping layer model. The surface response of a prolate type valley at stations along the x-
and y-axes is depicted by Figures 4 to 6 for incident P and SH Ricker wavelets. To reduce the
number of figures, the results are presented only for the main component of the displacement
field. The main component of motion for incident SH waves corresponds to the out-of-plane
component of the displacement field. For P wave incidences, the main component of the
displacement field is in the direction of propagation of the incident wave. The geometry of the
models and locations of equally spaced stations are shown at the bottom of each figure.
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Figure 4. Vertical component of displacement fieid (w-component) for transiemt surface responss of a prolate type vailey

with principel axes g; = 2, a; = ay = | to a vertically §, = 0" incident P Ricker wavelst with characteristic period

t,-3-66(:.-QquuﬂyWWqulmﬁhﬂnbmmdmmh-ﬂ.- L
g = 2, iy = 0167, B, = 05, &, = I, N, = 256, At = 02

For a vertically incident P Ricker wavelet, the vertical component of the surface response at
stations A to J along the y-axis is depicted by Figure 4. Seismographs on the surface of the haif-
space (G to J) indicate that the incident signal remains essentially undisturbed. However, for
stations atop the dipping layer (A to F) significant ampilification of the incident signal is evident.
On the surface of the half-space there is little disturbance after the passage of the direct incident
signal, which can be tracked by line AA as it propagates away from the valley. Lines CC and DD
track the propagation of surface waves toward and away from the centre of the valley,
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cylindrical valley of unit radius (a), a prolate type valley a, = 2,4, = ay = 1 (b), and a spherical vailey of unit radius (c), to

nv«uanyo.-o'mwm“mz,-mu.-un. b= l.a.-z.n,-Olﬂﬂ,-os.c,-lFor
spherical and prolate type valleys: N, = 256, A¢

respectively. The large width of the valley in the direction perpendicular to the siowness plane
allows a comparison between the results of Figure 4 with those of a compatibie cylindrical model
studied previously.? In addition, the response of a compatible spherical valley is included for
comparison as well. Consequently, the seismographs for the vertical component of the displace-
ment field located at the centre of these three models are depicted by Figure 5. Apparently, the
results for the cylindrical valley (Figure 5(a)) and for the prolate type valley (Figure 5(b)) are very
similar. The response of the spherical vailey at its centre also resembles those of the other two
models. However, the spherical model produces larger amplification at the centre of the valley.
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Figure 6. The o-component (u-component) of displacement fleld for transient surface response of 3 prolate type valley

8y =2, ay,=ay =1 to aa oblique §, = 30° incident SH Ricker wavelet with siowness vector in the xr-plans (yz-
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Results for an obliquely incident. Ricker SH wavelet are depicted by Figure 6. Seismograms in
the first column (second column) are located along the x-axis (y-axis) for the incidence with
slowness vector on the xz-plane (yz-plane) and they dispiay the o- (u-) component of the surface
displacement field which is the main component of the displacement field. The wavelength of the
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incident signal is the same for both models. Seismographs in the second column display larger
amplification of the incident signal than those in the first column This demonstrates the
importance of the azimuthal orientation of incident waves for three dimensional models.

Two dipping layer model. The surface response of two dipping layers subjected to verticaily
incident Ricker P wavelets at stations along the y-axis is depicted by Figures 7 to 10. The resuits
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dipping layers (a, = a, = a; = 2, b, = b, = b; = 1) t0 a vertically incident P Ricker wavelst with characteristic period
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o
are presented for two types of valley. The first model consists of two spherical dipping layers and
the second model consists of two dipping layers with a circular basin and a relatively shailow
depth. The geometry of the models and locations of equaily spaced stations along the y-axis are
shown in each figure.
For two spherical dipping layers, the vertical (w-) component of surface response is depicted for
different stations by Figure 7. Seismographs on the surface of the haif-space (Q to Y) indicate that )
®
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Figure 9. Comparison of the vertical component of displacement field for transient surface respomss at the centre of two
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the incident signal remains essentially undisturbed (negiecting small disturbances tracked by lines
AA and BB). On the surface of the innermost layer seismographs A to I display the formation and
propagation of a surface wave at and from the inner edge (station I) toward the centre of the vailey
as can be tracked by line CC. This surface wave amplifies as it converges toward the centre of the
valley. Line DD tracks a surface wave as it propagates away from the valley on the surface of the
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innermost layer. The surface wave reduces in amplitude as it diverges away from the valley ceat:
This surface wave continues to propagate away from the valley on the surface of the first lay
(line EE) and then on the surface of the half-space (line FF). It is interesting to observe how t.
focmingofthesurfacewammckedbylinaCCandDDcontribumtoMah‘
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amplification at stations around the centre of the valley (e.g. stations A to D for 8 < t < 13). These
surface waves can be better tracked and identified by investigating the horizontal component of
the displacement field where the response consists of a scattered field only. Seismographs in
Figure 8 display the horizontal (v-) component of the dispiacement field. Lines AA to FF track the
same surface waves as their counterparts in Figure 7 for the vertical component of the
displacement field.

It is interesting to compare the vertical component of the displacement field at the centre of
these two spherical dipping layers with that of compatible two cylindrical dipping layers
subjected to the same type of incidence as in Figure 7. For that purpose, the response of a
cylindrical two dipping layer model, studied previously by the present authors,? is reconsidered.
Figure 9 displays the response at the centre of the two models. Comparison of these two results
indicates that the amplification of the incident signal for 0 < ¢t < 9 is very similar in both models.
Even the amplitudes of the main peak at about ¢ = 5-5 are almost identical. Furthermore, for the
cylindrical model a signal develops at the centre and at about the same time (9 < t < 15) as in the
spherical model, with very similar characteristics but with smaller amplitude. The larger ampli-
tude of this wave signal for the spherical model is due to the constructive interaction and
convergence of surface waves at the centre of the valley. The results of Figure 9 demonstrate the
importance of three dimensional modelling for scattering of waves by actual irregularities.

It is interesting to compare the main component of the displacement field (w-component) of the
two dipping layer model with that of a one dipping layer model studied earlier in Figure 5(c).
These two models are compatible in the sense that both include a spherical dipping layer on the
top with identical geometries and material properties. However, the two dipping layer model
includes an additional layer which results in a smoother transition of the material properties from
the soft layer on the top to the hard bed rock (the half-space). Furthermore, the ratios of the
wavelength of the incident wavelet to the width of the soft top layer are the same for both models.
A comparison between the vertical component of surface response at the centre of these two
models indicates that the amplification of an incident signal at early times is more significant for
the one dipping layer model than for the two dipping layer one. However, for the two dipping
layer model much larger amplification of surface waves is observed at later times (9 <t < 15)
than for the one dipping layer model. This observation indicates that the presence of sediments
may change substantiaily the local amplification of ground motion.

Finally, Figure 10 displays the vertical component of the surface response of a shallow two
dipping layer model, subjected to a vertically incident P Ricker wavelet. The wavelength of the
incident signal is considered to be the same as for the spherical model. However, the depth of this
valley is reduced, in comparison with the spherical model, in order to study the depth dependency
of the surface response. On the surface of the half-space (stations Q to Y) the scattered waves are
very insignificant, whereas, for the spherical model (Figure 7) these scattered waves are more
pronounced. Similar surface waves (as in Figure 7) propagate on top of the second layer (stations
J to Q) with smaller amplitudes. On the surface of the inner layer (stations A to I) both converging
and diverging surface waves to and from the centre of the valley can be observed. The converging
and diverging surface waves tracked by lines CC and DD resemble those of Figure 7. However,
the amplitude of these surface waves is reduced significantly in this model. Reflected converging
and diverging surface waves from the edges of the valley can be identified by lines GG and HH.

The geometric complexity of these models precludes a more detailed e¢xamination of the
corresponding response. Nevertheless, the presented results provide sufficient information to
reach a basic understanding of the transient response of a three dimensional muitipie dipping
layer subjected to different incident waves. These results indicate clearly the importance of the
surface waves in the resulting ground motion.
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CONCLUSIONS

The amplification of incident plane SH, SV, P and Rayleigh waves by non-axisymmetric three
dimensional multiple dipping layers of arbitrary shapes is investigated by using a boundary
method. Both harmonic and transient incident wave fields are considered.

The presented results demonstrate the importance of three dimensional modeling of actual
irregularities. It is shown that the surface response of a dipping layer is very sensitive to azimuthal
orientation of the incident signal. The transient response of the spherical two dipping layer model
indicates the significance of the scattered surface waves. These surface waves could have large
amplitudes at stations close to the centre of the vailey. The large amplitude of these surface waves,
in comparison with their counterparts in cylindrical models, further emphasizes the importance of
three dimensional modelling of actual near surface irregularities. Furthermore, the comparison of
the transient surface response of the compatible spherical one and two dipping layer models
indicates that the presence of an additional layer may produce a substantial change in the surface
response of the model.
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ABSTRACT

An indirect boundary integral equation method is applied to
study amplification of elastic waves by three dimensional canyons
of arbitrary shape. Model investigated in this study is a general
three dimensional one. Incident plane SH, SV, P and Rayleigh
waves in form of a Ricker wavelet are assumed. Formulation of
the problem is outlined first in the frequency domain. Subsequent
transient solution is obtained through the Fourier synthesis. Sur-
face displacement fields are presented for several canyon shapes
subjected to different types of incident waves. The nature of differ-
ent scattered waves in the near field is examined. In particular, the
waves propagating along the surface of the canyon are identified as
creeping P and S-waves.

INTRODUCTION

Amplification of waves by near surface irrcgularities has been subject of cxiensive
investigations in recent years (Aki, 1988). The importance of this problem has been reinforced
through observations of strong ground motion amplification during some recent carthquakes
(e.g., Anderson et al., 1986). However, almost the cntire theoretical research on this topic
has been done for two dimensional models. Studics on diffraction of elastic waves by three
dimensional near surface irrcgularities have bcen limited to axisymmetric scatterers (e.g.,
Lee, 1978; Sanchcz Scsma, 1983). Only recently, investigations involving nonaxisymmetric
models have been made available (Mossessian and Dravinski, 1989; Eshraghi and Dravinski,
1989, Luco et al., 1990).

This work is a continuation of research reported in a paper by Mosscssian and Dravinski
(1989) in which the stcady state solution of the problem has been presented. Transient analysis
of the model is differed to this investigation.
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STATEMENT OF THE PROBLEM

Geometry of the model is depicted by Figurc 1. An anelastic half-space -oc < r.
y < o, = 2 0 contains a canyon of arbitrary shape S; Surface of the half-space Dy is
composed of two parts, flat surface S and irregular surface S;. Surface Sy is defined by
cquation z = g(x.y) for z > 0, where g(x,y) is somc arbitrary function. In this study the
irrcgular surfacc is chosen to be sufficiently smooth with no sharp comers being present.
Matcrial of the half-space is assumed to bc weakly anelastic, homogencous and isotropic.
The half-spacce is subjected to incident plane harmonic P, SV, SH and Rayleigh waves.

Equation of motion for steady state clastic wave propagation is specified by

A+)VV . u+pV2u+paZu=0;xe Dy 1)

where u =(u,v,w) is the displacement vector, X is the position vector and A and u are the Lame
constants. These constants arc assumed to be complex numbers to account for anelasticity
(c.g. Aki and Richards, 1980). Throughout the paper the term cxp(iw t) is understood. Stress
frce boundary conditions along the flat surface SF are specified by

cxz=0yz=ozz=o;z=0,xe SF (2)
On irregular surface S; boundary conditions arc of the form
tY=0; xe § 3)

where t¥ is the traction vector at the surface S; with unit normal v. Usual radiation conditions
should be satisficd by the scattered wave ficld at infinity.

Z Figure 1. Problem model.
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METHOD OF SOLUTION
Steady State Solution

Since the steady statc part of the solution has been discussed in the previous paper
(Mossessian and Dravinski, 1989) only a brief outline of the solution in {requency domain
is presented here.

Total displacement ficld in the half space Dy is specified by

u=uff + us; xe Dy 4

where the superscripts ff and s denote the free and scattered wave field, respectively. Follow-
ing an indirect boundary integral equation approach (e.g. Apsel and Luco, 1987; Dravinski
and Mossessian, 1987) the scattered field is assumed to be gencrated from distribution of
unknown tractions f(y) over an auxiliary surface S, inside the surface S; (Herrera, 1984).
Hence, the scattered displacement field in the half-space can be written in the form

us =‘[Sa G(x,y) f(y)dSa(y); xe Dy &)

where G is a half-spacc displacement Green's function tensor (Aki and Richards, 1980). The
clement G,;(x.y) corrcsponds to the i-th component of the displacement vector at x duc to
a unit harmonic force at y acting in the j-th direction. Theorctical development of these
Green’s functions is rather involved and their complete explicit forms are available in the
literature (e.g. Mossessian and Dravinski, 1989).

Choosing f(v) 10 be distributed at discrete points X, on the surface Sa, then it follows
from equation (5) that the total wave ficld can be writicn in the form (Mossessian and
Dravinski, 1989)

u=uff + G(x, Xm) ™ Xm € Sp; m=1,2,...M (6)

Here ' arc the unknown magnitudes of the point forces. Throughout the paper summation
over repeated index m is understood.The unknown force magnitudes f"' arc yet to be deter-
mined for all m. Using cquation (6), the components of total traction along the surface Sy
become

t=tif+ T(x,xpy) M; x € S m=1,2,.M )]

where t// is the free-field traction vector and T is the half-spacc traction Green's function
tensor. The component T;; (X, Xy,) corresponds to i-th component of the traction vector at X
due to unit harmonic force at x,,, acting in the j-th direction. For simplicity, the superscript
v is suppresscd. By choosing N observation points along the surface S; the corresponding
traction ficld can be stated as follows
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t(xp) = tf(xp) + T(xp, Xp) M xp € S[; Xp € Sy, (8)

n=12,..Nm=12,..M

Using cquation (8), the traction free boundary condition given by equation (3), assumes the
following form

G ft=a; ft=(fl 2,  mT 9)

where, vector f' contains the unknown force magmludes and matrix G, and vector a arc
known. Choosing N greater lhan M, equation (9) is solved in the least square sense. Once
the magnitudes of the forces f are known, the total wave field within the half-space Dy can
be obtained through equation (6).

Transient Solution

Transient solution is obtained from the steady state one by using an inverse Fourier transform
according 1o

u(x,t) =121 [ .= u(x,0)ei Dtdn (1Q)

The temporal part of the incident signal is assumed to be in the form of a Ricker wavelet
(Ricker, 1977) defined by

f0 =V @2 (12053 a=xthy (11

where t,, is the predominant period of the wavclet. The Fourier transform of this wavelet has
the followmg form

F(@) =- Bp o8 x2 0 12, /472 (12)

it is apparent that F(w) has a maximum at w, = 27/(, and that it decreases very fast
for frequencies larger than w,. Consequently, the stecady slale calculations are donc for the
range of frequencies 0 < w é 3.5 w, at equal frequency intervals. For convenience the time
delay t—t, can be introduced in equauon (11) to account for shift in the temporal origin of
the input motion.

NUMERICAL RESULTS AND DISCUSSION

The scatterer in the form of a semiprolatc canyon is considered. This gcometry can be
defined in paramctric form by
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x =acos(t)cos(s) y=bcos(t)sin(s) z=b sin(t) (13)

Osts w2, 0sSss<2n

where a and b are the major and minor axis of the prolate, respectively. To reduce the
number of figures, only the results for cross sections y=0 and x=0 are presented. Incident
waves are planc P, SV, SH, and Rayleigh waves. The azimuthal angle of incidence ¢g is
measured counterclockwise (viewed from z < 0) from the negative x-axis (see Figure 1).
The off-vertical angle of incidence 6, is measured form the positive z axis towards vector
r=(x,y), which defines the azimuthal position on the surface of the half-space. The amplitude
of the incident waves are the same as those used by Dravinski and Mossessian (1987).

Testing of the method

Since at the present time the authors are not aware of any results pertinent to transient
scattering of elastic waves by nonaxisymmetric three dimensional scatterers, validation of
the method has been done in the frequency domain. Namely, for steady state results and
axisymmetric scatterers there are available results in the literature which can be used for
testing of the method. The details of the testing have been reported in the paper on steady
state results (Mossessian and Dravinski, 1989) and they can be summarized here as follows.
Surface displacement fields obtained by this method are in excellent agreement with those
obtained by other researchers using different techniques. This was the case for different
incident waves at various frequencies.

For transient results the 1esting was done in a qualitative manner. This included checking
the time arrivals of direct waves as well as verification of the causality principle for obser-
vation stations at the surface of the canyon and the half space. All numerical calculations
proved to be stable and they could be performed on a standard workstation.

Transient Surface Response of a Canyon

Hemispherical and semiprolate canyons considered in this analysis have been defined
by equation (13). Throughout the paper the following normmalization procedure is adopted.
All distances are normalized with respect the principal axis "a" of the canyon which is chosen
to be of a unit length. All velocities are normalized with respect to the shear wave velocity of
the half-space which is assumed to be equal one. The dimensionless time is defined as t 3/a,
where 3 denotes the half-space S- wave velocity. Poisson ratio v and the shear modulus of
the half-space are taken to be 1/3 and 1, respectively. Consequently, the half-space P-wave
velocity is equal 2.

The Fourier integrals are evaluated by using the fast Fourier transform (FFT) algorithm.
For that purpose cach calculation requires certain sampling rateAw and number of samples
N. Transient responsc is evaluated for stations along the surface of the half-spaceand the
canyon.

Incident SH-Wave. For a vertically incident SH-wave (6 =0, ¢ = 0) and a hemi-
spherical canyon surface displacement field along the xz-plane is depicted by Figure 2. First
racc from the bottom corresponds to the station on thc half-space being farthest away from
the center of the canyon along the ncgative x-axis. Similarly, the top trace corresponds 10
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the station on the half-space which is farthest away from the center of the canyon along the
positive x-axis. Intermediate stations are chosen in such a way that the distance between
them remains the same regardless whether the stations are along the surface of the half-space
or the canyon. Therefore, 21 central traces in cach figure correspond 10 the canyon stations.
The remaining traces correspond to the half-space stations. Since the distances between the
stattons on the surface of the canyon are presented as being rectified it is possible to deter-
mune the apparent velocity of the waves propagating along the surface of the half-space and
the canyon dircctly from-the figures. Namely. if the time arrivals of wave peaks are marked,
then for a wave propagating with a constant phase velocity, the markings will lic on a straight
line with a slope corresponding to that phase speed. This convention is being used for the
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responses cvaluated in the the yz-plance as well (with appropriate change of axes).

SH wave
TN N
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Figure 2. Horizontal component (v) of surface displacement ficld for a hemispherical
canyon of unit radius subjecicd 1o a vertical incident SH Ricker wavelet for 45
different obscrvation stations along the surface of the half-space and the canyon
in the y=0 plane. The stations are symmetrically spaced at equal distances O =
0.157 in the range -2.884 < x < 2.884. The response unit amplitude is marked on
the right vertical side of the figure window. If not stated differently the following
parameters are kept the same: Incident wave parameters: 1, = 2, t, = 2.2, 8,
=0°, @¢ = 0°. FFT parameters: Number of samples N = 128. Material propertics
of the half-space: 3 = u = 1, & = 2, aticnuation factors for P and S-waves (aficr
Aki and Richards, 1980) Q, = Qg = 100.

Duc 1o symmeiry the only non-zero displaccment component is along the y-axis. The
v-component of displacement is called the prcdominant one for this incident wave. It is
apparcnt from Figure 2 that presence of the canyon caused great change of the free-ficld
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response which would be present in the half-space in abscnce of any irrcgulariues. In
particular, it should be emphasized increase in duration of the response for stations along the
surface of the canvon in comparison (o the stations along the surface of the half-space.

Diffracted body S-wave propagating away from the edges of the canyon can be observed
as well. The one propagating along the negative x-axis is marked by a dash line. Apparcntly,
the amplitude of the body waves diffracied by the canyvon edges is very small in comparison
to that of a dircct wave.

In addition 1o the waves traveling along the surface of the half-space one can observe
the waves propagating along the surface of the canyon. Their peaks arc marked with solid
circles. From Figure 2 the apparent speed of the waves along the canyon surface is found
1o be cqual to the shear wave specd 3 of the half-space These waves are called the creeping
waves, Since the particle motion of the creeping wave in Figure 2 is perpendicular to its
dircction of propagation the wave is of the S-type. Kawase (1988) obscrved the crecping
wavcs in studying SH incidence upon a two-dimensional semicircular canyon.

For the same geometry of the canyon and an oblique incident SH-wave surface response
in the yz-planc is depicted by Figure 3. To emphasize the importance of mode conversion
only the non-predominant components of displacement ficld (u and w) are displayed. These
componcents arc entircly produced by SH to P/SV mode conversions and they are not present
in two-dimensional models. Evidently, the non-predominant components of motion may have
substantial amplitude. One can detect presence of Rayleigh waves propagating away from
the cdges of the canyon. The phase shift between horizontal and vertical components of
motion, which is characteristic of Rayleigh waves, can be clearly observed. To claboratc
upon this further Figure 4 displays a phase plot for observation station (0, -2.884, 0) (bottom
traces in Figure 3). The phase plot demonstrates ovcerall the Rayleigh type of motion along
the surface of the half-space.

Another important featurc exhibited by Figures 2 and 3 is dependence of surface motion
amplification upon azimuthal orientation of the obscrvation stations relative to the incident
wave. This further ecmphasizes the need for three dimensional modeling of actual irregulari-
tics.

In addition 10 Raylcigh waves one can observe in Figure 3 the presence of the crecping
waves as well. The one marked for the vertical component of motion travels with speed of
the half-space P-waves and the one marked for the horizontal componcnt of motion travels
with apparent velocity of the half-space S-waves. The former is identified as the creeping
P-wave while the fatter one is recognized as the creeping S-wave. It should be noted that,
since the canyon wavces travel along a curved path, the polarization of these waves may
not be so obvious. However, near the canyon cdge, creeping P-wave results in a vertical
predominant motion while creeping S-wave produces horizontal predominant motion. Based
on this, and the obscrved apparent velocity of the creeping waves, it is possible to asses their
naturc on a casc by casc basis.

As the shape of the canyon changes from a hemispherical to a scmiprolate onc cxpects
to sce change in surface responsce patterns. To examine this, transient response for a prolate
canyon subjected 10 a vertical incident SH Ricker wavclet is considered next. Figure §
displays the predominant component of motion in the xz-planc.

Apparently, reduction in canyon depth (comparc Figures 2 and 5) produced reduction
in amplitude of the body waves diflracted by the canyon cdges. These waves could be
clearly detected for the hemispherical canyon (Figurc 2) while they are barcly visible for a
semiprolatc canyon.
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Figurc 3. Veriical component (w) and horizontal component (u) of the surface dis-
placement ficld for a hemispherical canyon of unit radius subjected 1o an incident
SH Ricker wavelet. 45 observation stations are symmetrically spaced in the
yz-planc for -2.884 <y < 2.884 (\ = 0.157). 65 = 30°. og = 0°.




Mosvessian and Dravinski: Transient Response for 3D Canyon 161

Phase Plot at Station (0.-2.9.0)
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Figure 4. Phase plot for the station (0,-2.884,0), which corresponds to the bottom
trace of Figure 3, for a hemispherical canyon and obliquely incident SH Ricker
wavelet. 8¢ =30°, ¢o =0. The arrows indicate the evolution of the phase plot
with time,
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Figurc 5. Horizontal component (v) of surface response for a semiprolate canyon in
the xz-plane subjected to a vertically incident SH Ricker wavelet. a=1, b=0.7,
-2.614 < x < 2.614 for 45 stations (N = 0.1345).
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Comparison of Figures 2, 3, and 5 suggests that most of the scattercd wave cnergy
1y converted into Rayleigh waves and considerably less into body waves diffracied by the
canyon cdges.

In addition to diffracted waves one can obscerve in Figure S the creeping S-waves as
well,

Therelore, the results for incident SH-waves can be summarized as follows: Rayleigh
waves can be clearly observed. Very strong SH 10 P/SV mode conversion can be detected
and this phenomena does not exist in two-dimensional models. Reduction of canyon depth
resulted in decrease of surface wave content of the ground motion. Both P- and S-creeping
waves are obscrved propagating along the canyon surface. Most of the encrgy radiates away
from the scattcrer in form of the surface waves rather than body waves diffracted by the
canyon edges.

Incident P-Waves. For a vertically incident P-wave and a semiprolate canyon surface
displacement ficld in xz-plane is depicted by Figure 6. Duc to symmctry only two components
ol motion are present. Rayleigh waves can be clearly scen propagating away from the cdges
of the canyon. They are marked by dash lines. The speced of the surface waves. ¢ p=0.94,
determined from the figure, ts in excellent agreement with the theoretical value ¢ =0.934.
In addivon, the appropriate’ phase shift between the horizontal and vertical component of
surface motion can be obscrved as well. Creeping P-waves are observed for the horizontal
component u vohile the ones of the S-type arc not detected.

For a henuspherical canyon and a vertically incident P-wave surface responsc for xz-
planc is very similar 10 the response of a scmiprolate canyon and is therefore omitied.
However, as in the case of SH inci:~nce, larger canyon depth produced more pronounced
surface waves in the resulting grour” motion and greater amplification at the cdges of the
canyon.

For the same incident wave and geumetry of the canyon surface motion in the yz-planc
is shown by Figure 7. From comparison of Figurcs 6 and 7 it is evident that surfacc wave
content of motion is greater along the yz-planc than for the xz-planc. This can be mcasured
in terms ol surfuce waves amplitudes as they propagate away from the canyon which is
especially evident for the nonpredominant components of motion u and v.

It is evident from Figure 7 that in the yz-planc only the creeping P-waves arc obscrved
with clarity.

Incident SV-Wave. Figure 8 displays surface displacement field for a hemispherical
canyon subjected to a vertically incident SV-wave. The motion is evaluated along the xz-
planc. Conscquently, only two components of motion are present and the predominant motion
1s along the x-axis. In addition to Rayleigh waves one can detect presence of the creeping
waves for both components of motion. These waves arc of the P- and of the S-type.

It should be noted that in comparison 10 SH and P incidence the SV incident wave
produced considerably longer duration of surface ground motion for the same shape of the
scaterer.

Furthermore, larger amplification of ground motion can be detected near the canyvon
cdges for predominant component of motion for SV incidence than for SH mendence. Fon
an oblique incident SV-wave the results are depicted by Figure 9 Evademly, a4 much more
comphcated pattern of surface motion cmerges in tns case. Thus, surface moton appears
10 be very sensitive upon the oricitation of the incident wave. Change from a vertical o an
oblique incidence resulied in significant change of motion patiern for both components of
displacement ficld. Sull, the basic features remain the same: Large amplification of motion
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Figure 6. Vertical (w) and horizontal (u) components of surface displacement field in
the xz-planc for a vertically incident P Ricker wavelet and a semiprolate canyon
a=1, b=0.7. -2.614 < x < 2.614 for 45 stations (A = 0.1345).
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Figure 7. Vertical (w) and horizontal (v) components of surface displacement ficld
in yz-plane for a vertically incident P Ricker wavelet and a semiprolale canyon
a=1, b=0.7. -2.0195 <y < 2.0195 at 45 stations (A = 0.11).
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Figure 8. Vertical (w) and horizontal (u) components of surface displacement field
in the xz-plane for a vertically incident SV Ricker wavelet and a hemispherical
canyon of unit radius. -2.884 < x < 2.884 at 45 stations (N = 0.157).
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Figure 9. Vertical (w) and horizontal (u) components of surface displacement ficld in
the xz-planc for an oblique incident SV Ricker wavelet (#y =30° oy =0) and
a hemispherical canyon of unit radius. -2.884 < x < 2.884 at 45 stations (A =
0.157).
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ncar the canyon cdges, significant presence of Rayleigh waves, and large duration of motion
atop the canyon in comparison to duration of the frec-field motion.

Change from a hemispherical to a semiprolate canyon for SV incidence produccd similar
results as discussed for SH and P-wave incidence and they are omitted in order to reduce the
numbcr of figures.

Incident Rayleigh Waves. For a semiprolatc canyon and Raylcigh wavce incidence
corresponding surface displacement field is presented by Figure 10. Since the wavcelength of
the incoming wave is fairly large in comparison to the size of the canyon very little blocking
cffect can be observed duc to the canyon. Amplification by the canyon cdges is present but
it is considerably smaller than for incident SH, P, or SV-waves. If the azimuthal angle of
incidence oy is changed from zero to 90° and the motion is evaluated in the yz-plane instead
in the xz-planc the resulting surface displacement pattern is similar to the one dcepicted by
Figurc 10 the only diffcrence being that tne amplification by the canyon edges is increased.
This result is in agreement with those of Figures 6 and 7 (or incident P-waves. Conscquently,
the results along the yz-plane are omitted.

If the wavelength of the incident Rayleigh wavc is reduced to t,=1 the rcsulting surface
displaccment ficld is displayed by Figure 11. Apparently, as the wavelength of the incident
wave becomes shorter the blocking effect of the canyon becomes significant. The results of
Figurc 10 show practically no blocking effect due 1o the canyon. However, the results of
Figurc 11 show that the blocking of the surface waves by the canyon becomes sigmificant.
This phcnomcenon has been observed for two-dimensicnal models as well (Wong, 1982;
Kawase, 1988). For the three dimensional models studicd here the blocking effect is smaller
than for the two dimensional models.

It is intcresting 1o observe from Figure 11 the waves diffracted by the canyon cdges.
These waves appear to be diffracted P, SV, and Rayleigh waves. Furthermore, one should
notc significant amplification of the surface motion ncar the edges of the canyon which is
not observed for Raylcigh wave incidence. with larger period t,, (Figure 10).

CONCLUSIONS

Transient responsc for a three dimensional canyon of arbitrary shape embedded within a
viscoclastic half space and subjected to plane SH, P, SV, and Rayleigh waves is investigated
by using an indirect boundary integral equation method. Nu: -erical results are presented for
incident waves in form of a Ricker wavelet and for a prolaic type of canyon. The results
demonstrate the importance of three dimensional modeling. This is particularly truc for the
SH-wave incidence werce it is shown that SH to P/SV mode conversion is very important
and that this process can result in significant displacement field which is not represented by
two dimensional antiplane strain model. Furthermore, it is shown that the results may be
very sensitive upon the azimuthal oricntation of the incident waves which implics that the
nonaxisymmetric naturc of the problem must be taken into account in order to model the
resulting displacement ficld accurately.

The scattered P and S-waves generated by the canyon cdges are observed propagating
along the surface of the canyon. In addition, the scattercd Rayleigh waves propagaling along
the surface of the half-space away from the canyon appcar to have significant amplitude in
comparison to the scattered body P and SV-waves. Thus it appears that most of the scattered
energy dissipates away from the canyon in the form of Raylcigh waves.
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Figure 10. Vertical (w) and horizontal (u) components of surface displacement ficid
in the xz-planc for an incident Raylcigh Ricker wavelet (¢, =0) and a semiprolate
canyon a=1, b=0.7. -2.614 < x < 2.614 at 45 stations (A = 0.1345).
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Figurc 11. Vertical (w) and horizontal (u) componcnts of surfacc displaccment ficld in
the xz-planc for an incident Rayleigh Ricker wavelet and a hemispherical canyon
of unit radius. 1,=1, (,=1.2. - 2.884 < x < 2.884 w 45 stations (AN = 0.157).
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The so called blocking effect of the canyon for incident Rayleigh waves is obscrved
for shorter wavclengths of the incident wave. The blocking effect is judged to be smaller
than in the corresponding two dimensional cascs. The same effect is not observed for large
wavclengths of Rayleigh waves.

Change from a hemispherical canyon 10 a semiprolate canyon (reduction of the canyon
depth) resulicd in smaller amplification of the surface ground motion.

Finally, the creeping P and S-waves propagating along the surface of the canyon have
been identified.
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A Hybrid Approach for Scattering of Elastic Waves by
Three-Dimensional Irregularities of Arbitrary Shape
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A hybrid technique is developed for studying scattering of elastic waves by
non-axisymmetric three-dimensional near-surface inhomogeneities. The technique
combines an indirect boundary integral equation method with the finite element
approach. Special emphasis is placed on inhomogeneities in the form of dipping layers
cmbedded in a half-space and subjected to piane incident P, SV, SH, and Rayleigh wavecs.

The accuracy and efficiency of the hybrid technique are examined through several
numerical examples. The cdmparisons with the results obtained by a boundary integral
cquation mcthod validate the accuracy of the hybrid technique. The versatility of the
method is demonstrated by considering several types of inhomogeneous basins containing
multiplc horizontal and dipping layers. It is found that the numerica)l efficiency of the
hybrid technique becomes much higher than that of the boundary integral equation
methods as the structure of the inhomogeneities gets more complex.

1. Introduction

The extent of the damage in the central part of Mexico City due to the Michoacan.
Mexico earthquake of September 19, 1985, was remarkably severe considering the long
epicentral distance of 350km (Anderson er al., 1986). Nearly all the buildings that
collapsed during the earthquake of September 19, were located in the central portion
of Mexico City, while the damage in the surrounding area was minimal. The central
part of Mexico City is founded on a lake bed zone formed by clay deposits which are
considerably softer than the alluvium of the surrounding hilly zone. In the two second
period. the acceleration response at the lake zone was about ten times greater than that
of outlying districts (Anderson et al., 1986). Thus, it appears that subsoil structure
played an important role in the resulting pattern and extent of damages in Mexico City
during the earthquake of September 19, 1985.

Observations from previous earthquakes in the "alley of Mexico (Zeevaert, 1964)
show that in spite of differences in source mechanism and epicentral distances,
accelerograms at the lake bed zone are similar with the low frequency oscillations known
as resonant excitation of the sedimentary basin (Anderson et al.. 1986). Analysis of
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earthquake damages at other locations. e.g., Lima, Peru earthquake of 1974 (Repetto
cf al.. 1980), indicates that the areas of intense damage atop alluvium can be highly
localized. Since many other highly populated areas are located on sedimentary basins.
the study of their response to seismic waves is of great interest in earthquake engineering
and strong ground motion seismology (Aki, 1988).

Experimental studies of Kagami et al. (1982), Kagami et al. (1986), and King and
Tucker (1984). as well as theoretical studies by Bouchon and Aki (1977), Bard and
Bouchon (19802, b) and Dravinski (1982a, b, ¢, 1983) have shown that presence of
sediment-filled valley may cause very large localized amplification of surface ground
motion. Studies of microtremors and strong ground motion in deep alluvial basins by
Kagami er «l. (1982), Kagami et al. (1986). King and Tucker (1984). and Bard and
Bouchon (1985) show that there appears to be a resonant-type behavior of the valley.
This can be explained only if there are interactions between horizontal and vertical
waves within the valley. Thus, for thorough understanding of seismic response of deep
alluvial valleys it is necessary to study the problem of amplification of the surface
ground motion by subsurface irregularities using two- and three-dimensional models.

Modeling the amplification of seismic waves due o scattering by subsurface
irregularities is characterized: by considerable complexities. Better understanding of the
site amplification effects requires more realistic models, which in turn should account
precisely for complex geometry and the material properties of the actual aliuvial valley.
For that reason. it is necessary to develop methods capable of incorporating these
requirements in studying the problems of site amplification effects.

Scattering of seismic waves by an alluvial valley may be solved analytically or
numerically. Analytical solutions are limited to very simple geometries and linear
materials (e.g.. Trifunac, 1971). Most commonly used numerical methods. finite elements
and finite differences, on the other hand, require the discretization of the entire solution
domain. This makes such procedures inefficient for geotechnical problems which involve
very large characteristic length. However, they have the advantage in their applicability
to problems with complex geometries and varying material properties (e.g.. Smith, 1975:
Zahradnik and Hron, 1987).

For the problems of scattering of seismic waves by irregularities with moderately
shallow slopes Aki and Larner (1970) have developed a technique using the so-called
Rayleigh hypothesis. The method is applicable to wavelengths which are either larger
than or of the order of the dimension of the irregularities. Bouchon (1973) and Bard
and Bouchon (1980 a, b) used this method to study the seismic response of sediment-filled
valleys subjected to incident P, SV, and SH waves. Bouchon and Aki (1977) extended
the Aki-Larner method to study the near field of a seismic source in a layered medium
with irregular interfaces. Bard and Gariel (1986) have developed an extension of ihe
technique to study seismic response of basins with large vertical velocity gradient. They
presented results for SH waves only.

Other methods shown to be very effective for studying the wave scatiering in
geotechnical problems involving unbounded domains are the boundary integral
equation methods (BIEM) (Dravinski, 1982a, b, ¢, 1983; Dravinski and Mossessian,
1987 a, b; Rizzo er al., 1985; Sanchez-Sesma and Rosenblueth, 1979; Wong, 1982). These
methods require only discretization of the boundary of the scatterers (Cole et al.. 1978),
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and the rediation conditions at infinity can be modeled exactly. A disadvantage of
BIEM is the large computational efforts needed for evaluation of the half-space Green's
functions. For plain strain and three-dimensional models the Green's functions cannot
be expressed in a simple form. Several alternative techniques have been proposed to
avoid this difficulty. One way is to use the full-space Green's functions and then impose
the traction-free boundary conditions on part of the free surface (Niwa ¢r «l.. 1986).
This approach has several drawbacks. First. the required size of the free surface to
stimulate a half-space is not clear beforehand since it 1s dependent upon frequency. the
shape of the irregularity and the type of incident wave. Therefore, extensive lesting is
required for each case. Another disadvantage of this approach becomes apparent in
the three-dimensional cases (Niwa and Hirose, 1987). Since the required number of
boundary elements on the free surface becomes very large (larger than what is required
for the scatterer itself), the size of the Green's function matrix needed for this method
grows substantially. Therefore, required amount of memory and computation time is
greatly increased. Kawase and Aki (1989) have used an alternate approach to study
transient responses of two-dimensional sedimentary basin. The technique combines the
direct boundary element method with the discrete wavenumber Green’s functions. In
this approach the infinite integrals are transformed into infinite sums over discrete
wavenumbers under the assumption of periodicity (Bouchon and Aki. 1977). Due to
periodicity assumption, the solution is valid until the arrival time of scattered waves
from adjacent irregularities. Therefore, detailed testing is needed to determine a suitable
periodicity length which avoids contamination from neighboring fictitious structures.

Another boundary method suitable for problems of scattering of elastic waves in
an infinite media is the wave function expansion approach (Eshraghi and Dravinski.
1988 a. b: Sanchez-Sesma, 1983). The method makes use of the C-complete family of
wave functions (Herrera and Sabina, 1978) which cun be evaluated very efficiently.
However, the wave functions in general do not satisfy the traction-free boundary
conditions. These boundary conditions have to be imposed on part of the free surface.
Therefore. the disadvantages of this method are similar to the case of the BIEM with
use of full-space Green's functions mentioned earlier.

For high frequency range. the ray methods and Gaussian beam technique appear
to be very effective (e.g.. Hong and Helmberger. 1978; Moczo et al.. 1987: Nowack
and Aki, 1984). These methods are relatively fast and they are applicable to
inhomogeneous basins with complex geometries. As demonstrated by Moczo et al.
(1987) such techniques cannot produce correct results for wavelengths larger than the
minimum radius of curvature of the basin boundary. However, in higher frequency
range these methods can compliment other low frequency methods mentioned earlier
(BIEM. discrete wavenumber method, finite element and finite differences).

In recent years, hybrid techniques which combine the boundary integral equation
methods (BIEM) with the finite element approach have proved to be very effective for
studying various problems of interest in engineering mechanics, earthquake engineering
and seismology (e.g., Beskos and Spyrakos. 1984; Kobayashi er al., 1986; Mossesstan
and Dravinski, 1987). The main advantage of the hybrid techniques is that it utilizes
the versatility of the finife element method for detailed modeling of the near field and
the effectiveness of the BIEM in the far field (Berg, 1984; Zienkiewicz et al.. 1977). For
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extensive review of the literature on the subject the reader is referred to articles by
Wong et al. (1985), Beskos (1987), and Mossessian and Dravinski (1987). These papers
show that at the present time, there are very few studies that have applied the hybrid
techniques to problems of scattering of elastic wave by non-axisymmetric three-
dimensional near-surface irregularities. One of the most complex models considered in
the literature to date is due to Kobayashi er «f. (1986), who investigated the steady
state response of a non-axisymmetric three-dimensional structure embedded in a visco-
elastic half-space. They applied a hybrid technique which utilizes a direct BIEM using
full-space Green's functions. The advantage of this approach is that it avoids the ex-
tensive computational efforts needed for calculation of the half-space Green's functions
(Dravinski and Mossessian, 1988). However., one needs to impose the traction-free
boundary conditions on part of the free surface, which results in the drawbacks discussed
earlier.

In this paper. applicability of a hybrid method to problems of scattering of elastic
waves by non-axisymmetric three-dimensional subsurface inhomogeneities is investi-
gated. The present work is an extension of the recent study done by Mossessian and
Dravinski (1987) in which they investigated seismic responses of two-dimensional dipping
layers of arbitrary shapes. The hybrid method combines an indirect boundary integral
equation approach (Dravinski and Mossessian, 1987a; Mossessian, 1989 Mossessian
and Dravinski. 1989) with the finite element technique. Incident plane harmonic P, SV,
SH. and Rayleigh waves are assumed. General formulation of the method is presented.
Testing of the accuracy of the technique is performed through comparisons with the
results obtained by the indirect boundary integral equation method (Mossessian, 1989)
for a homogeneous dipping layer. The capability of the method is demonstrated by
considering several types of inhomogeneous basins containing multiple horizontal and
dipping layers. The effects of horizontal and dipping type layering on seismic response
of the basin are examined. Finally, the efficiency of the method in comparison to the
boundary methods is discussed.

2. Statement of the Problem

Geometry of the problem is depicted by Fig. 1(a). Interior region D, is assumed to
include all the irregularities which may contain inhomogeneous and nonisotropic
materials. Material of the exterior region of the half-space Dg is assumed to be linearly
elastic, homogeneous and isotropic. Boundary B defines the interface between regions
D, and D¢. Incident wave is assumed to be a plane harmonic P, SV, SH or Rayleigh wave.

Equation of motion for a steady state wave propagation is specified by

dive+pwlu=0; xeD,uDg, (N

where ¢ and # denote the stress tensor and displacement vector, respectively, x is a
position vector, p is the mass density, and w is the circular frequency. Stress-free
boundary conditions along the surface of the half-space are specified by

0,:=0,,=0,.,=0; =0 and xeDuUDg. (2

Usual radiation conditions should be satisfied by the scattered wave field at infinity.
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Fig. 1. (a) Geometry of the problem. (b) Basin model.

For this study, we choose region D, to consist of several horizontal or dipping
layers (D;, i=1, - -+, R) which are perfectly bonded together, overlaying a half-space
D, (Fig. 1(b)). Interfaces C; between the layers need not be smooth. Continuity of the
displacement and the traction field along interfaces C, j=1,2, - - -, R is specified by

+

u_ =u;; xeC; 3

1)l,=t]"; xeCj, O]
where the subscripts + and — denote that the interface is being approached from the

outside and the inside, respectively, and t] denotes the traction vector at a surface C ;
with an outward unit normal v;.

3. Method of Solution

The interior region D,, is modeled by using the finite element method and the
exterior region Dg is modeled by using an indirect boundary integral equation approach.
Complete solution of the problem is then obtained by imposing the continuity conditions
along the boundary B. -

The finite element analysis of the interior region is considered first.
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4. Finite Element Analysis

By discretizing the continuum of the interior region D, into a set of finite elements.
the equation of motion for each element can be written in the following form
(Zienkiewicz, 1977):

K*u,—w’Mu,=r* xeD,, (5

where K* and M, are the stiffness and mass matrices. respectively, r* is the vector of
nodal point forces due to surface tractions, and u, contains the nodal displacements of
the element.

Applying the piecewise-uniform traction approximation (i.e., the tractions are
assumed to be constant along the face of each element) at the boundary of an element.
r¥ reduces to

r*=R_t’, ()

where R, is the matrix which transforms the traction vector ¢, into the nodal force
vector r?. Hence, the equation of motion (5) can be written in the following form:

Kau,=R.t!, (7
where the matrix K, is defined by
K.=K*—w'M, . (8)

The matrices K, and R, are computed for each element and assembled into global
matrices K and R. Therefore, the equation of motion becomes

Ku=Rt'; xeD,. 9)

Here, u and ' represent all the nodal displacements and tractions in the region D,.
respectively. The nodal displacement wg at the boundary B can be separated from the
interior nodal displacement ;. Subsequently, the nodal displacement vector u becomes

u=(u, uﬂ)T , (10)

where the superscript T denotes the transpose. Partitioning of the matrices in Eq. (9)
resuits in the following equation:

e ellel-Lm mlli)

Since for the problem at hand only the boundary B would be subjected to surface
tractions, there would be no nodal forces of the interior nodes, i.e., tf = Rz =Ry, =0.
Thus, &, can be eliminated from Eq. (11) to obtain the following result:

Lug=Ryyty , (12)
where
= — KK 'Kijg + Ky . (13)
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This completes the analysis of the finite element formulation for the interior region
D,. It should be emphasized that Eq. (12) relates the nodal displacements uy with nodal
tractions tg on the boundary B.

Formulation of the problem in the exterior region Dy is considered next.

5. Boundary Integral Equation Analysis

The total displacement field in the exterior region is specified by
llp_=ug+lli;, xEDE, (l4)

where the superscripts T and s denote the free and the scattered wave field, respectively.
Following an indirect boundary integral equation approach (Dravinski and Mossessian.
1987a; Mossessian and Dravinski, 1989) the scattered field is assumed to be generated
from distribution of unknown tractions f(y) on an auxiliary surface S, inside the surface
B. Hence the scattered displacement field in the half-space can be written in the form

ug =J G(x. p)f(»)dS,(y): xeDg, (15)
Sa

where G is a half-space displacement Green's function tensor (Aki and Richards, 1980).
The element G,(x, y) corresponds to the i-th component of the displacement vector at
x due to a unit harmonic force at y acting in the j-th direction. Theoretical development
of these Green's functions is rather involved and their complete explicit forms can be
found in the article by Mossessian and Dravinski (1989).

Choosing f(y) to be concentrated at discrete points of the surface §,, it can be
shown (Mossessian, 1989; Mossessian and Dravinski, 1989) that the total wave field
takes the following form:

U= +G(x, x, )™ xn€S,,m=1,2, - M. (16)

Here x,, are chosen and the unknown force magnitudes f™ are yet to be determined
for all m. Throughout, summation over repeated indices m is understood. Using Eq.
(16). the components of total traction along the surface S; become ‘

te=t+T(x, x, )™ xeB.m=1,2,- - M, a7

where ' is the free-field traction vector and T is the half-space traction Green's function
tensor. The component T (x, x,,) corresponds to the i-th component of the traction
vector at x due to unit harmonic force at x,, acting in the j-th direction. For simplicity.
superscript v is suppressed. By choosing N observation points on boundary B (to coincide
with the boundary nodes of the finite element model), corresponding displacement and
traction fields can be stated as follows:

ug =l +G, (18)
;E=r‘E‘+G‘f‘ (19)
- f‘=(fl'f1' ...,fM)T'

Here, vector f* (of order 3M x 1) contains all the unknown force magnitudes.
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Matrices G, and G, (of order 3N x 3M), and vectors ¥ and «ff (of order 3N x 1) are all
known. Continuity of the displacement and traction field along the boundary B requires
that

ug=uy; xeB (20)
te=tg; xeB, (20

where t; and ug are given by Egs. (18) and (19). Substituting Eqs. (18) and (19) into
Eq. (12), via Eqgs. (20) and (21), it follows that

L{«f + G fI=Rus[rf + G f1]. (22)
This last result can be written as
G f'=a, (23)
where
Go=LG,— Ry;G, (29)
a= Rggtl — Luif . (25)

By choosing N greater than M, Eq. (23) is solved in the least square sense. Once
the magnitude of forces f* are known, the displacement and the stress fields in region
Dg can be calculated through use of Egs. (16) and (17). The displacement field in the
interior region D, is obtained by using Eq. (11).

6. Numerical Results and Discussion

Shape of the linearly elastic dipping layer is chosen to be in the form of a semi-prolate
with a flat lower section. This geometry can be defined in the following parametric form:
for0<z<c

x=gacos(f)cos(s) y=bcos(r)sin(s) z=bsin(r) (26)

O<s<2m, O<t<i,t,;=sin"1(c/b)
forz=c¢

x=acos(t;)cos(s), y=bcos(s)sin(s), 27

where @ and b are the major and minor axis and c¢ is the maximum depth of the
semi-prolate. This shape is chosen to optimize the efforts for mesh generation without
loosing the general three-dimensional characteristics of the model. To reduce the number
of figures, only the results for cross sections y=0 and x=0 are presented, and they will
be referred to as sections A and B, respectively. Incident waves are plane P, SV, SH,
and Rayleigh waves, The azimuthal angle of incidence ¢ is measured counterclockwise
from negative x axis (Fig. 1(a)). The off-vertical angle of incidence € is measured from
positive = axis toward vector r, which defines the azimuthal position on the surface of
the half-space. The amplitude of the incident waves are the same as those used by
Dravinski and Mossessian (1987a). For convenience, a dimensionless frequency of
incident wave @, is defined as the ratio of the maximum length of the basin 2a and the
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wavelength of shear waves in the half-space. Throughout the paper uj. a; f;
J=0.1, - -, R denote the shear modulus, P- and S-wave velocities, respectively for layer
D; (see Fig. 1). Subscript zero refers to the half-space while nonzero ones denote the
dipping layers.

Several parameters may greatly affect the numerical accuracy of the method. These
are: i) shape and location of the auxiliary surface S,; ii) number of sources (point
forces) M: iii) number of observation points N; and iv) maximum length of each
element. From previous investigations (Dravinski and Mossessian, 1987 b; Mossessian
and Dravinski, 1987) it has been determined that a good choice for the auxiliary surface
S, ts the one that follows in shape the boundary B. Therefore, the auxiliary surface is
chosen to be in the following form:

x,=(1-4)x, (28)
n=01=-8y, (29)
,=(1-9z, (30)

where x, y, and z are described by Egs. (26), (27). Through numerical experiments the
value of the parameter ¢ is chosen to be 0.4. The number of sources is 105 and the
number of observation points (same as the boundary nodes at B) is 295. The effect of
element size is discussed in later sections.

6.1 Finite element discretization
The finite element mesh form at elliptical cross section z=0 is shown in Fig. 2(a).
Due to symmetry only a quarter of the mesh plane is displayed. This mesh form is
[y 8 po §

- x

(b}

2

Fig. 2. Finite element meshes for sections x-y, x-z, and y-z of the basin.
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repeated for deeper sections following the pattern shown in Fig. 2(b). which displays
the view of the mesh distributions along the vertical sections x-z and y--. Again.
due to symmetry only half of each section is displayed. It is apparent from Fig. 2(a)
and (b) that this model can easily incorporate planar and nonplanar layering.
Throughout volume discretization only eight node cubic and six node triangular prisms
are used. The number of elements used is 768. which leads to a total of 835 nodes. The
mesh size is kept constant for all the examples presented in this study.

6.2 Testing of the method

In order to assess the accuracy of the method the case of a homogeneous dipping
laver subjected to various incident wave fields is considered first. For this problem the
results of the hybrid technique are compared to the ones obtained through an indirect
boundary integral equation method (Mossessian and Dravinski, 1990). Surface response
at section A for incident P, SV. SH, and Rayleigh waves with azimuthal angle of
incidence ¢ =0" is shown in Fig. 3. [t can be seen from these figures that for all incident
waves the results of hybrid technique are in excellent agreement with those obtained
by the boundary integral equation method. Keeping the element sizes constant and
increasing the frequency by 30%, results in displacement fields depicted by Fig. 4. Some
differences between the results of the two methods are apparent. These discrepancies
are due to the fact that the number of elements per wavelength in the hybrid technique
has decreased. For this model the finite element discretization error has been analyzed
by considering the case when the material properties of the half-space are the same as
the ones for the dipping layer. In this case no scattering takes place, hence the internal
nodal displacements are obtained through Eq. (1) by using free-field displacement values
for boundary nodes. Therefore, deviation of the internal nodal displacement values from
the frce-field ones would correspond entirely to the error generated by the finite element
discretization. Using this approach, by keeping the mesh size constant and varying the
frequency. it is established that 10 elements per wavelength are sufficient for convergence
of the results.

In order to show the capability and versatility of the method, numerical results
for inhomogeneous basins are presented next.

6.3 Horizontally stratified basin

A basin consisting of two homogeneous strata is considered next (see Fig. 5(a)).
This model is obtained from the homogeneous dipping layer considered in Figs. 3 and
4 by changing the material properties of the lower section of the basin to fall in between
the ones of the top layer and the half-space. The surface displacement at section A for
incident P, SV, SH, and Rayleigh waves with azimuthal angle of incidence ¢ =0° are
depicted by Fig. 6. Comparison of the results with the ones for homogeneous basin
(Fig. 4) reveals that introduction of the intermediate layer has considerably reduced
the amplification at the center of the valley. This is not surprising since the “average
velocity of the basin” (Bard and Gariel, 1986) has become larger than the case of the
homogeneous dipping layer. It is interesting to note that for the Rayleigh waves the
horizontal component of displacement has been affected very little by stratification
while the changes for vertical component of motion are drastic. For different incident

J. Phys. Earth




Hybrid Approach for Scattering of Elastic Waves 251

4 P wave (0 deg) 4 P wave (30 deg )
]
2
3
3
[
x 4
4 SH 'wave (0 deg.) . SH wave (30 deg )
Lot Se - .°"._
3r P ‘\ 3 . hEN
L4 - - hd -
.
. 2k >4 5 .~
1+ 1
0 0
-2 1 1] 1 2 2 1 0 1 2
X X

uand w
~
v

M

L]

4

s

:

¢

.

£

’

¢

.

S 9 N

Fig. 3. Amplitudes of surface displacement spectra for a homogencous valley at
section A for incident P, SV, SH, and Rayleigh waves with ¢ =0°, §=0°, 30°.
a=2,b=12,c=088, yo=Pp=1,09=2,and 4, =1/6, 8, =0.5,. =1, 02,=0.64
(Unless stated differently these parameters stay the same for other figures).
Dash, dash-dot, and solid lines represent x-, y-, and z-components (u, v, w) of
the displacement vector, respectively, obtained by the hybrid technique (This
convention holds for all the figures). The *x’ signs, stars, and open circles denote
x-, y-, and z-components of the displacement vector, respectively, obtained by
the boundary integral equation method.
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Fig. 4. Amplitudes of surface displacement spectra for a homogeneous valley at
section A for incident P, SV, SH, and Rayleigh waves. ¢=0°, ,=0.83.

waves the surface responses at ~ction B are shown by Fig. 7. Coupling between P/SV
and SH modes appear to be much stronger for incident SH wave than the other type
of waves.

6.4 Multiple dipping layer basin

To further emphasize the versatility of the method, a case of a basin with two
dipping layers is considered. This model is obtained from the horizontally layered basin
studied earlier. Namely, the lower layer is extended toward the surface of the half-space
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Fig. 5. Three models of inhomogeneous basins.

through a circumferential strip (see Fig. 5(b)). Surface displacements at section A for
various incident waves with azimuthal angle of incidence ¢ =0° are displayed by Fig.
8. In comparison with the resuits of the horizontally stratified basin, here the overall
amplifications are smaller. It should be noted that the observed changes in the slopes
are due to discontinuity of the material properties at the interface of the two layers.
Figure 9 shows the surface response at section B for various incident waves. Here again
the amplification of the predominant component of motion is lower than the cor-
responding case of horizontally stratified basin (Fig. 7), and it is more confined to
surface of the top layer. However, the intensity of P/SV-SH mode conversion is about
the same. For a four dipping layer basin, Fig. 10 shows the surface response at section
A due to various incident waves. This model is obtained through simple extension of
the two-layer model. Namely, an intermediate layer is added to each of the two layers
(see Fig. 5(c)). In comparison with the case of two dipping layers, here the amplification
of predominant motion is higher. However, the changes are rather small. This 1s partly
due to the fact that the average velocity of the four dipping layers is close to that of
the two dipping layers and also due to the fact the frequency of incident wave is rather
low.

The complexity of the problems discussed here clearly demonstrate the capability
of the hybrid technique. Furthermore, it is of interest to note that the computational
time needed for the hybrid technique in the case of two and four dipping layers (Figs.

Vol. 40. No. 1, 1992




254 T. K. Mossessian and M. Dravinski

3 P wave (Odeg.) . 3 P wave (J0deg)
i
; I
3 | hg ~
| | |
QlemT e RS ekl 0
2 -1 0 ! 2 -2 -1 0 1 2
X X
6 SV wave (O deg) 10 SV wave (30 deg.)
3 4t
3 2_
1]
-2 i 0 ] 2
X x
s SH wave (0 deg) _ s SH wave (30deg )

S
T
»

3 Rayleigh wave

uand w

Fig. 6. Amplitudes of surface displacement spectra at section A of a basin with
two horizontal layers and incident P, SV, SH, and Rayleigh waves. yo=f,=1.
2=2,14;,=0458,=073,2,=1.46,4,=1/6,8,=0.5,2,=1,02,=0.83,¢=0°.

8, 9. and 10) is the same as in the case of homogeneous basin (one dipping layer, Fig.
4). However, for the boundary integral equation method, in going from one to two and
four dipping layers (in the analogous model), the required computational time would
approximately increase by factors of 8 and 64, respectively. This is caused by increase
in size of the Green's functions matrix. This analogy is true for other boundary methods
such as wave function expansion approach (Eshraghi and Dravinski, 1988a, b). Such
comparisons iuustrate that the hybrid technique tends to be more efficient than the
boundary integral equation approach as the structure of the inhomogeneity becomes
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Fig. 7. Amplitudes of surface displacement spectra at section B of the basin with
two horizontal layers and incident P, SV. SH, and Rayleigh waves. 2, =0.83.
¢=0°.

more complex. The drawback of the hybrid method is that the required number of
nodes grows rapidly as the frequency increases. Therefore it appears that for simple
inhomogeneities it may be more beneficial to use boundary integral equation approach
(specially for higher frequencies). However, if the inhomogeneity is very complex (e.g.,
a basin with a number of dipping layers, heterogeneity, or anisotropicity) the hybrid
technique becomes much more effective.
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7. Summary and Conclusion

A hybrid method which combines an indirect boundary integral equation and the
finite element techniques, has been developed to study scattering of elastic waves by
general three-dimensional subsurface inhomogeneities. The application of the method
are demonstrated through studying the surface responses of elastic basins containing
several horizontal or dipping layers subjected to P, SV, SH, and Rayleigh waves.

Comparisons of the results obtained by the present method with those obtained by
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Fig. 9. Amplitudes of surface displacement spectra at section B of the basin
with two dipping layers and incident P, SV, SH, and Rayleigh waves. 2, =0.83,
¢=0°

a boundary integral equation method, clearly show that the proposed technique produces
very accurate results, provided that the condition of minimum number of elements per
wavelength is satisfied (about 10 elements per wavelength). The types of problems
considered here indicate that the method can easily handle dipping layers with very
irregular geometries or varying material properties. Furthermore, it is demonstrated
that the hybrid technique becomes much more efficient than the boundary integral
equation method as the structure of the inhomogeneities becomes very complex. The
drawback of the hybrid method is that the memory requirement increases very rapidly
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Fig. 10. Amplitudes of surface displacement spectra at section A of the basin
with four dipping layers and incident P, SV, SH, and Rayleigh waves. 2, =0.83,
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(for the finite element part) as the frequency increases. However, with the existing rapid
growth in computational facilities this obstacle is expected to be remedied to a great
extent in the near future.
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Abstract

Response of plane multilayerd media enclosing an elastic inclusion
of arbitrary shape and submerged in fluid is investigated. The plane
strain model is assumed. The steady-state free-field response is mod-
eled by the Thomson-Haskell method using delta-matrix modification
and the scattered wave field by a boundary method. The transient
response is evaluated using the Fourier synthesis. Numerical results
are presented for a single layer plate with an elliptical inclusion and
a single layer with an inclusion bounded by an elastic half-space. For
the steady-state fluid-solid interface response the results show that (i)
presence of the half-space greatly influences the response; (ii) the re-
sponse is very sensitive upon the geometry and the embedment depth
of the inclusion; (iii) the response is sensitive upon the angle and fre-
quency of incident wave; and (iv) impedance contrast between the
plate and inclusion is important for overall response pattern. Tran-
sient results for vertical incidence demonstrate that the presence of
the inclusion is detected very clearly by both predominant and non-
predominant components of motion.

Introduction

Study of wave scattering by inclusions in elastic media submerged in fluid
has many practical applications. A few problems of interest are the non
destructive evaluation of materials (NDE) and geophysical prospecting at
the bottom of the sea. In the NDE , the part to be evaluated is immersed
in water and subjected to an acoustic disturbance by a transducer located in
water (1]. The reflected signal contains the acoustic signature of the material
under investigation which reveals the nature of fault present in the structure.




Theoretical modeling of scattering by inclusion in elastic media immersed in
fluid aids in the interpretation of the results obtained by tests like NDE.

The two-dimensional reflection of an acoustic beam from a plane solid-
liquid interface at or near the Rayleigh angle has been the subject of study
by several investigators in the past. Bertoni and Tamir (2] presented a uni-
fied theory of Rayleigh-angle phenomena for acoustic beams at liquid-solid
interfaces. The reflection of plane waves from a single layered half-space un-
der water was investigated by Bogy and Gracewski (3], who later extended
the analysis to include the bounded beam reflection from a multilayered
half-space [4]. Kundu et al. [1] studied the reflection from a multilayered
half-space in fluid using the Thomson-Haskell formulation [5,6]. They refor-
mulated the original Thomson-Haskell approach in terms of delta matrices
(7]. Schmidt and Jensen (8] studied the Gaussian beam reflection at fluid-
solid interfaces for a multilayered viscoelastic media.

So far there have been very few investigations of reflection from a scat-
terer embedded in an elastic medium immersed in fluid. Varadan et al. [9]
studied three dimensional ultrasonic wave scattering by a submerged flaw in
joined fluid-solid half-space by the T-matrix approach. They evaluated the
back scattered pressures at far fields by making an asymptotic approximation
for the scattered field. The two dimensional scattering from an interfacial
crack in a layered half-space submerged in fluid for incident plane waves and
bounded beams was investigated by Gracewski and Bogy [10,11]). They pre-
sented numerical results in the form of stress intensity factors at the crack
tip.

Analytical solutions of the scattering problems are generally limited to
simple geometries. Hence, numerical methods are employed to study most of
the practical problems of interest. The common numerical methods employed
are the finite element (FE) and finite difference (FD) methods, the bound-
ary integral equation (BIE) method, and the transition matrix (T-Matrix)
method. In addition, investigators have employed many hybrid methods.

Modeling the scattering of waves in infinite media by FE or FD appears
to be ineffective for geophysical problems in view of the vast computational
grid required for problems with long characteristic lengths [12]. In addition,
these methods do not completely satisfy the radiation condition at infinity
[13).

The BIE methods formulate the problem in terms of boundary values
and possible internal sources [14,15]. The radiation condition is satisfied
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exactly. Since the discretization is done only on the boundaries, the number
of variables is greatly reduced. But the BIE methods require the evaluation of
Green’s function which often results in large amount of computational effort
(16]. While the FE methods are generally more versatile in handling medium
with varying material properties [17], BIE methods are in general not suitable
for inhomogeneous media [18]. To overcome the shortcomings of both the
methods, some hybrid methods which combine say, FE and BIE approach
have been employed [19]. The advantage of such a method is that it uses the
versatility of the FE method for detailed modeling of the near field and the
effectiveness of the BIE methods in the far field [20]. But the method still
requires the evaluation of the Green’s function which can be time consuming.
To overcome that problem, Shah et al. (21] proposed another hybrid method
which combines the finite element method with the wave function expansion
technique. The interior region containing the scatterer is modeled by the
FE and the wave function expansions are used to represent the field in the
exterior homogeneous, isotropic and unbounded medium. The wave functions
satisfy the radiation condition at infinity. Another hybrid method combining
the BIE method and the Thomson-Haskell method for scattering by plane
layered medium is presented by Schuster and Smith [22]. The hybrid method
computes the Green'’s function of the scatterer without the layer by a BIE
method and the Green’s function of the layer without the scatterer by a
Thomson-Haskell method. The coupling between the scatterer and plane-
layers is achieved by a combination of Fast Fourier Transforms (FFT) and
extrapolation operators and these interactions are finally summed up in a
Born series.

The T-matrix approach has been adopted by a number of investigators to
study various scattering problems [23,24,25,26]). The essence of the T-matrix
method is to express the unknown coefficients of the scattered field in terms
of the known coeflicients of the incident field by employing the T-matrix.
The formation of the T-matrix requires the evaluation of certain integrals
which are calculated numerically for arbitrary geometries.

In addition to the above methods, the Aki-Larner technique [27] based on
the Rayleigh hypothesis has been applied to the scattering problems where
the wave lengths are either larger than or equal to the size of the irregularities.
Bouchon [28], Bard and Bouchon [29,30] used this method to study two
dimensional seismic response of sediment filled valleys subjected to incident
P, SV, and SH waves. Bouchon and Aki [31] extended the Aki-Larner method
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to study the near field of a seismic source in a layered medium with irregular
interfaces.

For the high frequency wave scattering problems, the ray method is found
to be very effective. This method is based on asymptotic techniques in ap-
proximating the wave field [32]. The method has been extended to include
the moderate frequencies by Moczo et al. [33]

All the methods described so far principally pertain to the steady-state
response of the problem. For the numerical solution of the transient problems
there are two approaches (i) Direct methods and, (ii) Indirect methods.

In direct methods, solutions to scattering problem is formulated as a func-
tion of time. The main difficulty with this method is the accumulation of
errors with increase of time [34]. Smith [12] used the FE approach and Boore
et al. [35], used the FD technique to solve the antiplane strain problem di-
rectly in the time domain. Banerjee et al. [36] applied the BIE technique to
solve the three dimensional transient problem for spherical and hemispher-
ical cavities embedded in an infinite or semi-infinite medium subjected to
radial pressures. For indirect methods, the transient response is obtained
from steady state solution through the use of Fourier or Laplace transform
[37]. Manolis and Beskos [38] used the Laplace transform method to solve
elastodynamic plane strain problems in infinite media. Niwa et al. [39] used
the Fourier transform technique and the BIE approach for calculating the
two dimensional transient response for completely embedded irregularities
subjected to incident P and SV waves. A comparative study of direct and
indirect methods combined with BIE method is presented by Manolis [40].
A detailed review of the BIE method and other boundary techniques (T-
Matrix, Born Approximation, Hybrid FE-BIE etc.) in dynamic analysis can
be found in the paper by Beskos [41].

In the present study, a hybrid Thomson-Haskell method and boundary
method is employed to study the steady-state response of an inclusion in
a plane multilayered medium in fluid. The Thomson-Haskell formulation is
recast in terms of delta matrices. The transient response is evaluated by
using the fast Fourier transforms . The analysis is done for the plane strain
case.
The Thomson-Haskell formulation [5,6,7,1] with delta-matrix modifica-
tion is employed for the free-field evaluation which involves the response
of the layered medium in fluid without the inclusion. A boundary method
which utilizes the wave function expansion is employed to model the scattered
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field. The boundary method originates in the works of Herrera and Sabina
(42] and Herrera {43]. The method involves employing the wave functions
satisfying the equations of motion in each domain to represent the scattered
field. These wave functions, in general, do not satisfy the boundary or con-
tinuity conditions. These conditions are satisfied in the least square sense at
a finite number of points on the boundary. The advantage of this method
over the BIE method is that it does not involve the evaluation of the Green’s
function. Sanchez-Sesma et al. [44,45] used this approach to solve the scat-
tering of SH, P, SV and Rayleigh waves for two dimensional problems. The
elastic wave scattering by two dimensional dipping layers has been solved by
this approach by Eshraghi and Dravinski [46,47).

This paper is divided into several parts. After the introduction, the state-
ment of the problem is presented. Then, the steady state solution of the
problem is given. Next, numerical results are discussed for both the steady
state and transient cases, followed by the conclusions.

Statement of the problem

The geometry of the problem is shown by the Fig. 1. The model consisis of
a multilayered infinite elastic half-space (or a plate) with an inclusior. within
a layer. The medium is surrounded by inviscid fluid on one side. The fol-
lowing conventions are understood throughout. The domains are designated
by D;j(j =0,1,...,N) and the boundaries, C;(j =0,1,...,N). Domain D,
denotes the fluid half-space while Cy denotes the interface between the fluid
and the first layer. The inclusion domain and boundary in the p** layer are
designated by D, and C, respectively. Summation over repeated indices is
understood. Underlined indices indicate that the summation is being sup-
pressed. Material of the media is assumed to be linearly elastic, homogeneous
and isotropic. The fluid half space is subjected to an oblique incident plane
harmonic acoustic wave. The problem is of the plane strain type.

The equation of motion in terms of displacement potentials is given by
(48]

M[kaj_]¢i(x’w) = o;j = 0’ 1’2’ e 7N?p' (1)
Mlkyiloj(x,w) = 0;5 = 1,2,...,N,p (2)
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where

M(x] = V% + (+)?

A- +2". ".
w w
kaj=;;;kaj=3j'af-= lpi l;ﬂf=p—; (3)

Here, ¢, and t; denote the P-wave and SV-wave potentials , respectively , x
is the position vector, and w is the circular frequency. a; and f; denote the
dilatational and shear wave velocities, respectively and k,; and kg; are the
respective wavenumbers. p;, u; and A; are the density, and Lame’s constants
of the j*# layer, respectively. For convenience, the wavenumber in fluid k.o
is sometimes denoted by k;.

The displacement field in the j** layer is then represented by

u; = Vo; +V x(0,0,9;) (4)

where, u; has components (u, j, u¢;,0) and (u;,0,w;) in the polar and rect-
angular coordinate systems respectively.
The boundary conditions on the free surface of the plate are given by

Ont =0;0m =02 = 2§ (5)

where 0,, and o, are the normal and tangential components of the traction
vector, respectively. For the multilayer half-space, instead of Eqn.(5) radia-
tion condition is applied for the half space. The continuity conditions along
the solid-fluid interface Cy are specified to be (7]

wg (%, w) = wi (x,w) (6)
Tano(X,w) = 0, (X, w) - M
Taa(x,w) = 0. (8)

The continuity conditions along the interfaces C;(j = 1,...,N —1) are given
by

ul_y (%, w) = uj (x,w) (9)
wi(x,w) = w;(x,w) (10)
”:nj-l(xv“") = d;-j(x"") (11)
a:tj-l (x,w) = a;tj(xs w) (12)
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where u;, w; are the components of the displacement alorg the x and z di-
rections, respectively. The ‘+’ and ‘-’ signs refer to the interface C; being
approached from below and above, respectively.

The continuity conditions along the inclusion boundary C, are taken to be

ug (x,w) = uz(x,w) (13)
wl(x,w) = wy(x,w) (14)
Tnp( X W) = 07 (%, W) (15)
a:tp(xv""’) = a;l.tp'(x’w) (16)

Here, the ‘+’ and ‘-’ signs refer to the interface being approached from outside
and inside the inclusion, respectively.
The incident field is a plane wave in the fluid given by
‘Pinc = (_i/k!)ei(k,zﬁnao+k,zcoda—wt) (17)

where 0, is the off-vertical angle of incidence (see Fig. 1). The factor (—i/k;)
is introduced for convenience.

Steady state solution of the problem

The solution is sought as a superposition of the free-field and scattered wave
fields according to

u; =ul/ +ul; x€D;;5=0,1,...,N (18)

uy =uy; X€ Dy (19)
where the superscripts ‘ff’ and ‘s’ denote the free-field and scattered wave
fields, respectively.

Free-field solution

In the absence of the inclusion, the Thomson-Haskell mechod for mulitilayer
plate is employed for the free-field solution (5,6,1]. Delta-matrix approach (7]
is incorporated to overcome the precision problem. For the free-field, Carte-
sian coordinate system with the origin located at the solid-fluid interface is
employed (see Fig. 1).




The incident wave of Eqn.(17) can be written as

‘pinc = (_i/k!)eiq,:ei(h—m) (20)
where (k% Ic’)‘/2 k<k
= f = = Nf

= { ,-(kz - k”l/? k >k (21)

Here the horizontal P-wavenumber is defined by,
k = kysinby. (22)
The reflected wave is given by
¢! = R(=i/k)e inr5eilke=ot) (23)

where R is the reflection coefficient [1] . Hence the total free-field in the fluid
is
/! = (=i [k )(eM1* 4 Re~1%). (24)

Scattered wave field solution

For the scattered field evaluation, the origin is shifted inside the inclusion
with the polar coordinate system (r,d) used for the stress and displacement

field evaluations (see Fig.1). The scattered field for the fluid is taken to be
of the form

08 = amoHM(kaor)cosml + a% oHW (kqor)sinmé (25)
¥ = 0.
m=0,...,Mo. (26)

For the j** layer the scattered waves are assumed to be of the form,

¢; = bujHQ(k,jr)cosmd + b s HO(k, jr)sinmb+
e i HO(K, ir)cosmﬂ +c iH,‘,}’(ka ir)sinma

mlm

(27)

¥ = d, iH,(,f’(kp jr)cosmd + d;, iH'(:)(k" jr)sinmé-+
en ng)(kﬂ jr)cosmd + ¢, iH,(,})(kp jr)sinmé (28)
i=1L...,Nym=0,..., M;.
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If an elastic half space is present, we have,

N = ¢, NH,(,})(ka NT)cosmb + 7, NH,(,})(ka NT)sinmd (29)

N = e, NH!'})(kﬂ NT)cosmé + 7. NH,(,})(I:B NT)sinmé
m=0,...,Mn.

Within the inclusion we have,

(30)

¢y = fmpIm(kapr)cosmb + fr, p' m(Ka prr)sinmé (31)

¥y = gmpIm(kgpr)cosmé + g7, P’ m(kgprr)sinmd.
m= 0,...,M,l.

Here, a,, to g, are the unknown coefficients, J, is the Bessel function of
the first kind, H{!) and H? are the Hankel functions of the first and second
kind, respectively and M is the order of expansion in each domain. All the
wave functions in the Eqns.(25-32) are solutions of the equations of motion.
In addition, the scattered wave field in the fluid and the half space consists of
the outgoing waves only while the scattered field in the plate consists of both
incoming and outgoing waves. Inside the inclusion the wave field consists
of standing waves. As indicated earlier, in Eqns.(25-32), summation over
repeated index ‘m’ is assumed.

(32)

At this point more about the nature of the wave functions used to for-
mulate the scattered waves should be stated. These functions belong to a
class of functions known as the c-complete functions. The theory of these
functions has been developed by Herrera and Sabina [42] and Herrera [43]
using algebraic theory. The concept of c-completeness allows constructing
systems of solutions which are complete with respect to general boundary
values independently of the specific region of consideration. The boundary
method employing these c-complete functions grants convergence of the ap-
proximating sequence when a least-squares fitting of the boundary conditions
is used [44]. Sanchez-Sesma et al. [44] demonstrated the applicability of this
method for the problem of diffraction of SH waves by surface irregularities.
They later extended the study to the diffraction of plane P, SV and Rayleigh
waves by surface irregularities [45). This method has been used by Eshraghi
and Dravinski [46,47] to study the scattering by multiple dipping layers for
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the antiplane and plane strain models. Details of the theory concerning the
boundary method can be found in the paper by Herrera [43].

Evaluation of expansion coefficients

The unknown coefficients of the scattered wave field are determined by im-
posing the boundary and the continuity conditions given by Eqns.(5-16).
These conditions are imposed at the N; points along the boundaries C,y and
C;,j = 0,1...N(N — 1, for the half-space) resulting in a system of linear
equations of the form

Ga=f. (33)

Here a contains all the unknown expansion coefficients, vector f involves the
free-field displacements and tractions, and G consists of the wave functions
and their derivities evaluated along the boundaries. The size of the matrix
G is (SxK), where S>K. Hence Eqn.(33) is solved in the least square-sense
[49]. Once the expansion coefficients are known, the displacement and the
stress fields can be evaluated throughout the medium.

Numerical results

This section describes the steady state and transient response for a single
layered plate and a single layered half-space with an elliptical inclusion.
These models are chosen to incorporate most of the physical character-
istics of the problem while keeping the computation to a minimum. The
geometry of the model is shown for a single plate in Fig. 2. Half-space is
added to the plate when present. The fluid domain is designated by Dy and
that of the plate and inclusion by Dyand Dy, respectively. Half-space is de-
noted by D;. The plate thickness and the inclusion depth are denoted by ‘h’
and ‘d’, respectively. The principal axes of the elliptical inclusion are denoted
by ‘a’ and ‘b’. The lengths on the top and bottom plate boundaries, along
which the continuity and boundary conditions are imposed, are taken to be
to be ‘C0’ and ‘C1’, respectively (see Fig.2). The orders of expansion for the
fluid, plate, inclusion and the half-space are denoted by My, M;, M;. and M;,
respectively. Number of collocation points along the solid-fluid interface and
the free surface of the plate (or plate-half-space interface when present) are
taken to be Ny and NV, respectively. For the inclusion boundary it is denoted
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by Ny.. The density, shear modulus and shear wave velocity of the plate are
taken to be unity. When half-space is present, the density, shear modulus
and shear wave velocity of the half-space are taken to be unity. All spatial
variables are normalized with respect to the major principal axis of the ellip-
tical inclusion which is assumed to be unity. For convenience, dimensionless
frequency 2 is defined as the ratio of the maximum width of the inclusion to
the wavelength of the shear wave in the layer enclosing the inclusion. Hor-
izontal and vertical steady-state amplitudes are denoted by |Uz| and |Uz| ,
respectively. The total free-field displacement used for normalization is de-
fined as [Ufft| = \/(|Uffz? + U f fy[?), where |Uffz| and |Uf fy| are the
free-field horizontal and vertical displacement amplitudes, respectively.

Steady state response

This section describes the steady state response of the plate and layered half-
space models. First, convergence tests are conducted to fix various problem
parameters. Subsequently, the formulation is verified for the zero-scattering
condition and symmetric response. Finally, the steady state results for a
single plate and layered half-space models are discussed.

Convergence and testing of results

First, tests are conducted to evaluate the orders of expansion required for
convergence of results in each domain. Similar tests are conducted to de-
termine the number of collocation points along each interface at which the
continuity and boundary conditions are imposed. In addition, studies are
done to determine the lengths of the plate boundary along which the conti-
nuity and boundary conditions are imposed. The convergence of results has
been established by observing the change in scattered wave displacement am-
plitudes at the solid-fluid interface with change in the value of the parameter
under consideration. The numerical results are accepted as the final ones if
the difference between two successive calculations is judged to be sufficiently
small for the increase in the value of the parameter of interest.

In the absence of a test case to compare the results with, the formula-
tion was first tested for zero-scattering condition in which the material of
the inclusion was taken to be the same as that of the plate. As expected,
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the contribution of the scattered field was found to be zero. In addition,
the formulation is verified for symmetry for a vertical incidence. Both the
horizontal and vertical displacement amplitudes are found to be symmetric
thus lending further confidence in the validity of the calculated results.

The parameters chosen for convergent results are indicated in the respec-
tively figures. Further details of the convergence studies and testing of the
results are given in [50).

Response of a plate with inclusion

Response of a plate with an inclusion is studied for different impedance con-
trasts. Two cases are considered: Inclusion being stiffer than the plate and
the plate being stiffer than the inclusion.

Figure 3 summarizes the results for the case of a stiff inclusion for differ-
ent aspect ratios of the inclusion i.e., circular, elliptical with horizontal and
vertical major axes. The vertical and horizontal displacement amplitudes
of the plate are normalized with respect to the total free-field displacement.
From the vertical component of displacement in Fig. 3, the scattered field is
found to interfere destructively with the free-field near the inclusion. This
appears as a dip in the total field indicating the presence of the scatterer.
As to be expected, the scattered field has the greatest influence when the
geometry is circular (aspect ratio=1) and least when the elliptical major axis
is in the horizontal direction (aspect ratio=2). Away from the scatterer, the
displacement field approaches the free-field value. Figure 3 also shows the
influence of the scatterer on the horizontal component of motion. The effect
of the inclusion depth on the surface displacements is shown in the Fig. 4.
As expected, the effect of the scattered field on the vertical displacement is
found to diminish with increase in depth.

Figure 5 depicts the response of a plate with a stiffer inclusion as a func-
tion of frequency and spatial variable ‘x’ for a vertical incidence. The three
dimensional plots show the total horizontal and vertical displacement ampli-
tudes of the plate along the solid-fluid interface for different frequencies of
the incident wave. The peaks of the vertical displacement correspond to the
natural frequencies of a free-free plate without the inclusion for a vertical
incidence. The analytical values of these are given by

w=nxa/h;n=0,1,2,... (34)
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where a and h are the P-wave velocity and the thickness of the plate, respec-
tively. As seen from Fig.5, the natural frequencies for the plate considered
are at w=0.0, 2.60, 5.20, etc. In view of the very low density of the fluid,
the natural frequencies of the plate in fluid are found to almost coincide with
the natural frequencies of the free-free plate. The horizontal displacement is
found to peak at these frequencies as well. This is due to the fact that the
horizontal displacement, which is entirely due to the scatterer, is dependent
on the free-field response. The free-field response in turn, peaks at the natu-
ral frequencies of the plate thus resulting in large response at the fluid-solid
interface.

Figure 6a shows the response due to a very small off-vertical incidence
for the case discussed above. The free-field horizontal displacement is signif-
icantly higher than the vertical displacement for this case (compare Figs.3
and 6a). The effect of the scattered wave field can be observed on both
the horizontal and vertical free-field displacements. Above the inclusion,
the scattered field interferes constructively for the vertical displacement and
destructively for the horizontal displacement.

Figure 6b refers to the case of a soft inclusion inside a hard medium .
The vertical component of displacement shows a peak atop the center of
the scatterer indicating constructive interference of the scattered field with
the free-field as opposed to the destructive interference for the case of hard
inclusion inside a soft medium (compare Figs. 6b and 3).

Based on the presented results, it is found that the steady state response
at the fluid-solid interface is sensitive upon the shape and embedment depth
of the scatterer, location of the observation points, angle of incidence, and
the frequency of excitation. In addition, the impedance contrast between the
plate and the inclusion has significant influence on the response.

Response of a layer with inclusion on an elastic half-space

In this model, the inclusion is embedded in a layer atop an elastic half-space.
The inclusion is taken to be softer than the surrounding layer which in turn
is softer than the elastic half-space below it.

The response of the model to a vertical incidence is shown in Fig. 6¢c. The
vertical displacement shows a peak inside a valley indicating the presence of
the scatterer. The presence of the valley below the free-field value indicates
the destructive interference of the scattered field with the free-field. The
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peak inside the valley shows smaller destructive interference over the scat-
terer up to a distance of twice the width of the scatterer. Comparison of the
vertical displacement with that of the plate with a softer inclusion (Figs. 6¢
and 6b) shows that the presence of the half-space changes the response at
the fluid-solid interface considerably.

Transient response

This section deals with the transient response of plate with a hard inclusion.
The transient response is obtained from the steady state response by Fourier
synthesis [46] Here, the response is studied for a vertically incident Ricker
wavelet [51]. The Ricker wavelet is defined as

f(t) = (V&[2)(T = 0.5)e™", 7 = (x(t — t,)/ty)’ (33)

where ¢, corresponds to the peak amplitude in the time domain and ¢, cor-
responds to the angular frequency wp(= 2x/t,) which is associated with the
peak amplitude in the Fourier transform domain .

The Fourier transform of the Ricker wavelet is given by

F(w) = (—ty/2)(w/uwy)e~ler) giote, (36)

Figure 7 displays the total horizontal and vertical displacement compo-
nents of the fluid at the plate-fluid interface for a vertically incident Ricker
wavelet (t,=25.0 secs. and t,=6.0 secs.). Totai of 41 equally spaced obser-
vation stations are chosen. The bottom trace depicts the motion at (X=-
10,Z=0), while the top trace corresponds to the station at (X=10,Z=0). The
impedance contrast corresponds to that of a very hard inclusion in a soft
plate. From the Fig. 7, it is found that the displacements are quiescent over
a time required for the initial disturbance to reach the surface of the plate.
The vertical displacement is mostly due to the superposition of the incident
wave and the waves reflected at the top and the bottom surfaces of the plate.
The vertical displacement, though dominated by the free-field, clearly indi-
cates the presence of the scatterer. This is evident from the fact that , near
the scatterer, the vertical displacement field is different from that observed
at farther distances from the scatterer. The horizontal displacement, which
is entirely due to scattering , shows the presence of the inclusion clearly.
The horizontal disturbance is found to be anti-symmetric about the middle
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observation point. A little distance from the inclusion, the scattered wave
field is found to assume a uniform shape traveling with a constant velocity.
This is indicated by the line ‘A-B’ in Fig.7. Based on the time arrivals at ‘A’
and ‘B’, the scattered wave found in the horizontal component of interface
motion is found to be traveling along the interface with the P-wave veloc-
ity of the fluid. The amplitude of the horizontal disturbance is found to be
decreasing very slowly with increasing distance from the scatterer over the
observed range.

Figure 8 shows the vertical displacement for the same inclusion in a stiffer
plate than that of Fig.7. The vertical displacement field, which is dominated
by the free-field, displays waviness which decays with time. This waviness is
due to the multiple reflection of the incident wave between the plate surfaces.
This phenomena is observed only when the density of the plate is much higher
than that of the fluid, so that incident energy is trapped in the plate for a
longer period (compare Figs. 7 and 8). As the contrast between the inclusion
and plate becomes smaller, the effect of the scatterer is found to be very small
on the predominant component of the displacement.

Figure 9 displays the vertical response of the plate described above when
the inclusion is much harder than the plate. The effect of the inclusion is
strongly felt in the vicinity of the inclusion. This is evident through the lack
of waviness in the response above the inclusion. The effect of the scatterer
is found to be very local as opposed to the case described in Fig. 7.

Conclusions

In the present study, fluid-solid interface response of the plate with inclusion
submerged in fluid is investigated. It is found that the steady-state fluid-solid
interface response is very sensitive upon the geometry and embedment depth
of the inclusion as well as the frequency and the angle of the incident wave.
In addition, the impedance contrast between the plate and the inclusion
influences greatly the response. Finally, the presence of the half-space greatly
changes the response.

From the transient response of a plate with a very hard inclusion and for
vertical incidence, it is found that the presence of the inclusion is indicated
very clearly by both the predominant and the non-predominant components
of displacement. In the predominant component this is evident from the al-
tered free-field near the inclusion and the scattered waves traveling away from
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the inclusion. In the non-predominant component of the displacement, the
scattered field is observed as the waves traveling at the plate-fluid interface
with the P-wave velocity of the fluid. These waves are found to attenuate
very slowly with increased distance from the scatterer. When the density of
the fluid is significantly lower than that of the plate, the effect of multiple
reflection at the plate surfaces is observed in the transient response. For this
case, the effect of the scattering from the inclusion is observed only when the
inclusion is significantly harder than the plate. Due to the significant pres-
ence of the free-field waves trapped in the plate, the effect of the scattered
wave field is felt only locally and is not visible at farther distances from the
inclusion.
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Abstract

Three dimensional response of plane multilayerd media enclos-
ing an elastic inclusion of arbitrary shape and submerged in fluid
is investigated. The steady-state free-field response is modeled by
the Thomson-Haskell method using delta-matrix modification and the
scattered wave field by a boundary method. The transient response is
evaluated using the Fourier synthesis. Numerical results are presented
for a single layer plate with an ellipsoidal inclusion.

The steady-state results show that the response along the fluid-
solid interface is sensitive to the aspect ratio and location of the inclu-
sion, impedance contrast and the angle of incidence. In addition, the
results of the 3D analysis for the non-axisymmetric problem indicate
significant variation of the radial and azimuthal displacement compo-
nents with the change in the azimuthal angle. Comparison of the 2D
and 3D models indicates that for the harder inclusion, both the mod-
els show similar qualitative trends in the transient and steady state
responses. However, for a softer inclusion, the steady state responses
of the two models are found to differ significantly from each other.
The transient studies clearly indicate the horizontal wave traveling at
the solid-fluid interface with the acoustic wave velocity of the fluid.
The effect of the scatterer on the vertical displacement is found to be
significact only in the vicinity of the inclusion.

Introduction

This paper is an extension of a similar study for a plain strain model by
Keshavamurthy and Dravinski [1]. A detailed literature review of the works
relating to the two dimensional scattering can be found in the paper (1].




The literature review in the present paper is concerned only with the three
dimensional elastic wave scattering problems.

Among the earlier studies of three dimensional scattering of elastic waves,
the works of Day [2], Aspel [3], Sanchez-Sesma [4] and Lee [5] are of special
importance. Day (2] used a finite element (FE) technique to study the scat-
tering of seismic waves by an axisymmetric cone-shape sedimentary basin.
Aspel [3] used a boundary integral equation (BIE) method to study soil-
structure interactions for axisymmetric scatterers. Sanchez-Sesma [4] stud-
ied the diffraction of elastic waves by three dimensional surface irregularities
by the boundary method. Lee (5] used the wave function expansion method
to study three-dimensional diffraction of plane P, SV and SH waves by a
hemispherical alluvial valley. Niwa and Hirose [6] formulated a BIE method
to solve the scattering problem of elastic waves by a non-axisymmetric cavity
or crack in a three dimensional half-space. Paskaramoorthy et al. (7] em-
ployed the hybrid FE-wave function expansion method to study scattering of
elastic waves by an axisymmetric scatterer embedded in an isotropic elastic
medium. All the papers cited so far deal with steady state problems. Lee and
Langston (8] studied the transient response of a circular basin using the ray
method, while Sanchez-Sesma et al. [9] studied the response of a 3D axisym-
metric valley by the boundary method. Eshraghi and Dravinski [10] used
the boundary method to solve the transient scattering by three dimensional
non-axisymmetric dipping layers. Mossessian and Dravinski [11] employed
the hybrid FE-BIE method to study the elastic scattering by three dimen-
sional irregularities of arbitrary shape. Bostrom and Karlsson (12] studied
three dimensional response to point-force excitation of elastic plate with an
embedded cavity by the T-matrix approach. Varadan et al. [13] studied the
three dimensional ultrasonic wave propagation by a submerged flaw in joined
fluid-solid half-space by the T-matrix approach.

In the present study, a hybrid Thomson-Haskell and boundary method
is employed to study the steady state response of an inclusion in a plane
multilayered medium in fluid. The Thomson-Haskell formulation is recast in
terms of delta matrices. The transient response is evaluated by using the fast
Fourier transforms. Details of the procedure can be found in the paper [1].

This paper is divided into several parts. After the introduction, the state-
ment of the problem is presented. Then, the steady state solution of the
problem is given. Next, numerical results are discussed for both the steady
state and transient cases, followed by the conclusions.
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Statement of the problem

The geometry of the problem is shown by the Fig. 1. The model consists
of a multilayered infinite elastic half-space (or a plate) with an inclusion
within a layer. The medium is surrounded by inviscid fluid on one side.
The Cartesian and spherical coordinate systems with the origin at O’ are de-
noted by (x,y,z) and (r, 8, ¢), respectively. The Cartesian coordinate system
with origin at O is represented by (X, Y, Z). The domains are designated by
D;(j = 0,1,...,N) and the boundaries by C;(j = 0,1,...,N). Domain Dy
denotes the fluid half-space while Cy denotes the interface between the fluid
and the first layer. The inclusion domain and the boundary in the p** layer
are designated by D, and C,, respectively. Summation over repeated in-
dices is understood. Underlined indices indicate that the summation is being
suppressed. Material of the media is assumed to be linearly elastic, homoge-
neous and isotropic. The fluid half-space is subjected to an oblique incident
plane harmonic wave. The off vertical and azimuthal angles of incidence are
denoted by 8, and ¢y, respectively (see Fig. 2a). The equation of motion in
terms of displacement potentials is given by [14]

Mk, jlpi(x,w) = 0,5 =0,1,2,...,N,p (1)
M(kyjlbj(x,w) = 05 = 1,2,..., N5 (2)
M[kﬂj_]xi(x,w) = 0;] = 1,2,---,N,P' (3)

where

Mls] = V*+(s)

X: +2“. w;
ki = 2 k a? =1 g 4
! 8i = ,BJ Pi ’ Pi ( )

Here, ; denotes the P-wave potential while 1; and x; denote the shear wave
potentials, x is the position vector, and w is the circular frequency. In addi-
tion, a; and B; denote the dilatational and shear wave velocities, respectively
while ko ; and kg; are the corresponding wavenumbers. Finally, p;, and g;,
); are the density, and Lame’s constants of the j** layer, respectively. For
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convenience, the wavenumber in fluid koo is sometimes denoted by ;.

A system of unit basis ( er,es, e4) is defined for spherical coordinates
(r,0, ¢) according to Fig. 2b. For the same coordinate system the displace-
ment vector in the j** layer u; can be expressed in terms of three displacement
components (u, j, ug;, Uy ;) according to

u; = Vp; + V(ry;) x e; + €V x V x (rx;er) (3)

xeD;, j=0,1,...Np'.

where £ is a scalar factor to give potentials the same dimension. The Carte-
sian displacement components of vector u; are denoted by (u;, vj,w;). Simi-
larly, the traction vector T has components (T;;, Ty ;, T:;) and (T j, Ty j, Ty ;)
in the Cartesian and spherical coordinate systems, respectively.

The boundary conditions on the free surface of the plate are given by

Th(x,w)=0; z=2zy (6)

For multilayer half-space, instead of Eqn. (6), radiation condition should be
applied for the half-space. The continuity conditions along the solid-fluid
interface Cy are specified to be

wg (%, w) = wy (x,w) (M)
Th(x,w) =0 (®)
Ty (xw) =0 (9)

T (x,w) = T (x,w) (10)

The continuity conditions along the interfaces Cj(j = 1,..., N —1) are given
by
ul,(x,w) = uj(x,w) (11)
T/i(x,w) = Tj(x,w) (12)
In the Eqns. (6-12), ‘4’ and ‘-’ signs refer to the interface being approached

from below and above, respectively.
The continuity conditions along the inclusion boundary C,, are given by

ut(x,w) = uy(x,w) (13)
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T} (xw) = Ts(x,w) (14)

where ‘+’ and ‘-’ signs refer to the interface C,y being approached from
outside and inside the inclusion, respectively.
The incident field is a plane wave in the fluid given by

¢l'ﬂc = (_i/k!)ef(k’(nx)—wt) (15)

where n is the unit normal to the plane of the incident wave and x is the
position vector, respectively (see Fig. 2a). The factor (—i/k;) is introduced
for convenience.

Steady state solution of the problem

The solution is sought as a superposition of the free-field and scattered wave
fields according to

ujzuff+u;;xeD,-;j=0,1,...,N (16)

u,; =uy; x€ Dy 17

where the superscripts ‘ff’ and ‘s’ denote the free-field and scattered wave
fields, respectively.

Free-field solution

The free-field problem is solved by the Thomson-Haskell method with delta
matrix modification. The problem is initially solved for the off-vertical angle
of incidence of 6, in the coordinate system (X’,Y’, Z’) shown in the Fig. la.
The procedure is outlined in [1]. The displacement and stress fields are then
transformed to the coordinate system (X,Y,Z) shown in Fig. 2a by rotating
about the Z-axis by the azimuthal angle of incidence ¢,.

Scattered wave field solution

For the scattered field evaluation, the origin is shifted inside the inclusion
with the spherical coordinate system (r, 8, ¢) used for the stress and displace-
ment field evaluations (see Fig. 2b). The scattered field for the fluid is taken
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to be of the form

08 = a¥d A (kaor) P(cos ) cos mé
+ 882 A)(kqor) P™(cos 6) sin m¢

m<n, Mo<No, Xx€Dp.
Yo =
Xo = 0.
For the j** layer the scattered waves are assumed to be of the form
@} = cob hD(k,jr) P(cos 6) cos mg
+ dh, ROk, i7) P (cos 6) sin m¢
+ enh K (k,jr) P(cos ) cos m¢
+ f:-‘j.'. hf,’)(kair) P*(cos 8) sin m¢

m<n, M;<N;, x€Dj, j=1,..N(N~1,forthe half-space).

! = cuk Bk, i) PI(cos 8) cos mé
+ deh KDk ir) PI(cos 6) sin me
+ exh B(kyir) Pr(cos 0) cos mg
+ fob (kg ir) P2 (cos 6) sin mé

m<n, M;<N;, x€D;, j=1,...N(N-1,]orthehalf—space).

x.
Xj = cub hD(kyir) PT(cos 8) cos mé
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(18)

(19)
(20)

(21)

(22)




x.
+ dokn h&”(kﬂir) P™(cos 8) sin m¢
x.
+ ent hf,”(kﬂir) P™(cos 8) cos m¢
x.
+ fm’!‘ hf,”(kﬂir) PT(cos 0) sin m¢
m<n, M;<N;, X€Dj, jal,...N(N=1, for the half -space).

If an elastic half-space is present, we have,
o = e A (k, yr) P™(cos 8) cos m
+ f,‘,’,y hg)(kasr) Pl (cos 6) sin m¢

m<n, MNSNy, X€DN.

o = &8N AD(k;yr) Pr(cos 8) cos mé
+ f3N h{)(kgyr) P (cos 8) sin mé

m<n, MN<SNn, xe€Dy. -

XN = eig hs,”(kaur) P™(cos ) cos m¢

+ oY BO(k,yr) P(cos 6) sin mé

m<n, MNSN;. xX€Dx.
Within the inclusion we have,
@y = 9n jn(kapr) PT(cos 0) cos ms
+ h::g: jn(kapr) Pr(cos 0) sin m¢

m<n, M'I sN"o xeD’h

by =8 jalkopr) Pr(cos ) cos mé
+ h:g a(kspr) Py (cos 8) sin mo

[

(23)

0

(25)

(26)

(27)

(28)
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xXp! | -
Xy =gum jn(kopr) PT(cos 0) cos mg
+ hnk ju(kaper) P™(cos 8) sin m (29)
m<n, My <Ny, x€Dy

where A{!) and A{?) are the spherical Hankel functions of the first and sec-
ond kind, respectively, j, is the spherical Bessel function of the first kind,
P (cos 8) is the associate Legendre polynomial, anm through ., are un-
known coefficients, and N and M are the orders of expansions. The wave
functions in Eqns. (18-29) are solutions of the equations of motion ( Eqns.
(1-3) ). In addition, the scattered wave field in the fluid and the elastic half-
spaces consists of the outgoing waves only while the scattered field in the
plate consists of both incoming and outgoing waves. Inside the inclusion, the
wave field consists of standing waves. As indicated earlier, in Eqns. (18-29),
summation over repeated indices ‘m’ and ‘n’ is understood.

Evaluation of ezpansion coefficients

The unknown coefficients of the scattered wave field are determined by im-
posing the boundary and the continuity conditions given by Eqns. (6-14).
These conditions are imposed at the L; points along the boundaries Cp» and
Cj,j = 0,1...N(N — 1, for the half-space) resulting in a system of linear
equations of the form

Ga=f. (30)

Here a contains all the unknown expansion coefficients, vector f involves the
free-field displacements and tractions, and G consists of the wave functions
and their derivities evaluated along the boundaries. The size of the matrix
G is (SxK), where S>K. Hence Eqn. (30) is solved in the least square-sense.
Once the expansion coefficients are known, the displacement and the stress
fields can be evaluated throughout the media.




Numerical results

This section describes the steady state and transient response for a single
layered plate with an ellipsoidal inclusion. The steady state response is pre-
sented for both axisymmetric and non-axisymmetric case. The transient
response is shown for the axisymmetric case.

These models incorporate most of the physical characteristics of the prob-
lem while keeping the computation to a minimum. The geometry of the
model is shown for a single plate in Fig. 3a. The plate thickness and the
inclusion depth are denoted by ‘h’ and ‘d’, respectively. The principal axes
of the ellipsoidal inclusion are denoted by ‘a’, ‘b’ and ‘c’. The radii on the
top and bottom plate boundaries, along which the continuity and boundary
conditions are imposed, are taken to be to be ‘R0’ and ‘R1’, respectively (see
Fig. 3a). The orders of expansion of the spherical Hankel functions for the
fluid, plate, and the inclusion are denoted by Ny, N; and Ny, respectively.
The azimuthal orders of expansion for the fluid, plate, and the inclusion are
denoted by Mo, M, and M., respectively. Number of collocation points along
the solid-fluid interface and the free surface of the plate are taken to be Lo
and L, respectively. For the inclusion boundary the number of collocation
points is denoted by Ly,. The density, shear modulus and shear wave veloc-
ity of the plate are taken to be unity. All spatial variables are normalized
with respect to the major principal axis of the ellipsoidal inclusion which
is assumed to be unity. For convenience, dimensionless frequency Q is de-
fined as the ratio of the maximum width of the inclusion to the wavelength
of the shear wave in the layer enclosing the inclusion. The displacement
field at the surface is referred to in the cylindrical (r, ¢, z) coordinate system
with the origin at (X=Y=Z=0) (see Fig. 3b.). The radial, azimuthal and
vertical displacement amplitudes are denoted by |Ur|, |U¢| and |Uz|, respec-
tively. The total free-field displacement used for normalization is defined
as [USft| = \J(Uffz +USfy +|USf2P), where |USffzl , [USfy| and
|U f f z| are the free-field displacement amplitudes in the x,y and z directions,
respectively. The scattered wave field radial and vertical displacement am-
plitudes are denoted by |Ur(scatt)| and |Uz(scatt)|, respectively.




Steady state response

This section describes the steady state vertical response of the plate with
an ellipsoidal inclusion. First, convergence tests are conducted to fix various
problem parameters. Finally, the steady state results for the single plate
model are discussed.

Convergence and testing of results

Tests are conducted in order to determine the orders of expansion ‘M’ and
‘N’ (see Eqns. (18-29)) required for convergence of results in each domain. In
addition, maximum radii of the plate boundary along which the continuity
and boundary conditions are imposed are also determined. The convergence
of results has been established by observing the change in scattered wave
displacement amplitudes at the solid-fluid interface with change in the value
of the parameter under consideration. The numerical results are accepted as
the final ones if the difference between two successive calculations is judged
to be sufficiently small for an increase in the parameter under consideration.

In addition to the convergence studies, the formulation was verified for
the zero scattering condition where the material of the inclusion is the same
as that of the plate. The model was also tested for axisymmetric response.
Here the azimuthal orders of expansion M > 0 are also included even though
M=0 is sufficient for axisymmetric problems. The response was found to be
perfectly axisymmetric.

The details of convergence and testing can be found in [15]. Only the
final parameters chosen for convergent results have been indicated in the re-
spective figures.

Azisymmetric response

Axisymmetric response of a plate with an inclusion is studied for different
impedance contrasts. As in the two dimensional problem, two cases are con-
sidered: Inclusion being stiffer than the plate and the plate being stiffer than
the inclusion. Figure 4 summerizes the steady state response of a stiff ellip-
soidal inclusion to a vertical incidence for different sizes of the inclusion. The
geometry is always axisymmetric about the vertical axis. The vertical and
radial displacement amplitudes of the plate are normalized with respect to
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the total free-field displacement. From the vertical component of displace-
ment in Fig. 4, the scattered field is found to interfere destructively with the
free-field near the inclusion. This is indicated by the dip in the total field
above the inclusion. As to be expected, the vertical scattered field has the
greatest influence when a=b=c=1 and least when a=b=1,c=0.5. Figure 4
also shows the influence of the scatterer on the radial component of motion.
The study concerning the effect of the inclusion depth on the surface dis-
placements is shown in the Fig. 5. As expected, the effect of the scattered
field on the vertical displacement is found to diminish with increase in depth.

Figure 6 refers to the case of a soft inclusion in a stiff medium. The
vertical displacement shows a dip near the scatterer indicating a destructive
interference. The effect of the scatterer on the vertical displacement is found
to be a little less pronounced than in the case of stiffer inclusion. The radial
displacement on the other hand is significantly higher than for the stiffer
inclusior (Compare Figs. 6 and 4).

Non-azisymmetric response

The non-axisymmetric response of a plate with a stiff inclusion is studied for
two cases: Off vertical incidence with an axisymmetric inclusion and vertical
incidence with a non-axisymmetric inclusion.

Figure 7 depicts the response of a stiff spherical inclusion in a softer plate
to an off vertical angle of incidence. The response is shown along the mu-
tually perpendicular x and y-axes, respectively. The radial components of
displacement along these axes are indicated by subscripts ‘x’ and ‘y’, respec-
tively. Fig. Ta shows the response along the x-axis. From the figure, along
the x-axis, the radial scattered wave field is found to interact destructively
over the inclusion. The vertical scattered wave displacement, on the other
hand, indicates constructive interference. This is in contrast to the response
to a vertical incidence (compare Figs. 4 and 7a). Due to the off-vertical
incidence, a strong free-field is present in the radial component of the dis-
placement. The displacement field is nearly identical on either side of the
mid point for small off vertical angle of incidence. Similar trend was observed
for the 2D case (compare Figs. 6a of [1] and 7a). Fig. 7b shows the response
along the y-axis. The problem is symmetric about the x-axis as ¢o=0. Hence
the radial and vertical displacement amplitudes are found to be symmetric
about the mid point. In addition, the radial displacement, which is entirely
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due to scattering, is found to be zero at the mid point. Along the y-axis,
the vertical scattered wave field is found to interfere constructively with the
free-field over the inclusion. These studies indicate that the off-vertical inci-
dence and the azimothal orientation of the observation point, relative to the
incident wave, greatly influence the motion at the solid-fluid interface.

Figure 8 shows the steady state response of a stiff ellipsoidal inclusion for
a vertical incidence. In the Fig. 8, the variations of the radial, azimuthal
and vertical displacements are plotted against the surface coordinates over
the first quadrant of the solid-fluid interface. Due to the bi-axial symmetry
of the problem about x and y-axes, the displacement amplitudes are similar
over the other quadrants. The radial lines on the mesh surface of the Fig. 8
correspond to ¢ increments of 10°. Hence the figure displays variation of the
displacements with change in the azimuthal angle of observation ¢. From
the Fig. 8c, the vertical displacement is found to vary little with ¢. This
indicates that the vertical displacement does not show the non-axisymmetric
nature of the problem very clearly. On the other hand, radial and azimuthal
displacements (see Figs. 8a and 8b) are found to vary significantly with ¢.
Due to the bi-axial symmetry of the problem, the azimuthal component is
observed to be zero along the x and y-axes. The azimuthal displacement is
found to increase towards ¢ = 45° from both the axis. The radial displace-
ment, on the other hand, decreases from either of the two axes.

Based on the presented results, the axisymmetric steady state response is
found to be sensitive upon the shape and embedment depth of the scatterer,
location of the observation points, the impedance contrast between the plate
and the inclusion, and the angle of incidence. In addition, the response of a
non-axisymmetric inclusion for a vertical incidence showed significant varia-
tion in the non-predominant components of displacement with the change in
the azimothal angle.

Transient response

This section deals with the 3D transient response of plate with a stiff in-
clusion. The transient response is obtained from the steady state one by
the Fourier synthesis. Here, the response is studied for a vertically inci-
dent Ricker wavelet. Only axisymmetric problems have been considered to
keep the computations at a minimum. For convenience, the displacement
components Ux, Uy, and Uz are denoted by U, V, and W, respectively. Dis-

12




placements U and W are plotted in order to facilitate comparison with the
corresponding 2D-problems.

Figure 9 displays horizontal and vertical displacement components of the
fluid at the plate-fluid interface for a vertically incident longer wavelength
Ricker wavelet. Total of 20 equally spaced observation stations are chosen
on either side of (X=Y=Z=0) along the X-axis. Therefore, the bottom trace
depicts the motion at (X=-10,Y=0,Z=0), while the top trace corresponds to
the station at (X=10,Y=0,2=0). The trace corresponding to (X=Y=2Z=0)
is not shown. The impedance contrast corresponds to that of a very stiff
inclusion in a soft plate. Due to the longer wavelength of the incident wave
and dominant free-field, the scattered wave influence on the vertical displace-
ment is found to be very small. The effect of the scattered field, however, is
visible from the altered free-field near the inclusion. The horizontal displace-
ment, which is entirely due to scatterer, is found to assume uniform shape.
A wave traveling with the P-wave velocity of the fluid is observed moving
away from the origin. This is indicated by the slope of the straight line ‘AB’,
which corresponds to the P-wave velocity ay in the fluid. The amplitude of
the horizontal disturbance is found to be almost constant over the observed
range.

Figure 10 shows the transient response for the case when the incident
wave has shorter wavelength. The vertical displacement is mainly composed
of the incident wave and the waves reflected at the bottom and top surfaces
of the plate. This is clearly visible due to the shorter wavelength of the
incident wave. In the Fig. 10, presence of the scatterer is visible from the
changed free-field vertical displacement field near the inclusion. In addition,
scattered waves are observed traveling away from the inclusion.

Figure 11 shows the vertical displacement for the same inclusion in a
stiffer plate than that of Fig. 10. The vertical displacement field, which is
dominated by the free-field, displays waviness which decays with time. As
indicated for the plane strain problem, this phenomena is observed only when
the density of the plate is much higher than that of the fluid, so that incident
energy is trapped in the plate for a longer period (compare Figs. 10 and 11).
As the contrast between the inclusion and plate becomes smaller, the effect
of the scatterer is found to be very small on the predominant component of
motion.

Figure 12 displays the vertical response of the plate described above when
the inclusion is much stiffer than the plate. The effect of the inclusion is
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strongly felt in the vicinity of the inclusion. This is evident through the lack
of waviness in the response above the inclusion. The effect of the scatterer
is found to be very local as opposed to the case described in Fig. 10.

Comparison with 2D

The following observations can be made from the study of 3D and 2D prob-
lems with analogous geometry and property contrasts.

Comparison of the 2D and 3D responses for different aspect ratios (com-
pare Fig. 3 of [1] and Fig. 4), indicates that the vertical displacement shows
similar qualitative trends for both the 2D and 3D problems. That is, the ef-
fect of the scatterer on the vertical response is found to be most pronounced
when the inclusion is spherical (circular for 2D) and least when the minor
axis of the inclusion is in the vertical(z) direction for ellipsoidal(3D) and
elliptical(2D) inclusions. The effect of the scattered field on the vertical dis-
placement is found to be higher for the 3D problem in comparison with the
2D problem. The horizontal displacement on the other hand is found to be
higher for the 2D problem.

Comparison of the vertical displacements in Fig. 6b of [1] and Fig. 6 for
a softer inclusion shows that the scattered field interferes destructively for
the 3D case in contrast to constructive interference observed for the 2D-case.
This change is significant. The horizontal displacement for this case is found
to be of the same order for both the 2D and 3D models.

Comparison of the transient response for 2D and 3D models for a stiff
inclusion indicates that the qualitative features of the response are preserved
for both the models. The vertical displacement is found to be dominated by
the free-field with the effect of the scatterer strongly visible near the inclusion.
Horizontal scattered wave displacement is observed to be traveling at the
fluid-solid interface with the P-wave velocity of the fluid. The amplitude
of the horizontal scattered wave was found to be almost constant over the
observed range.

From the above comparison, it is observed that for the stiff inclusion, the
2D problem is found to give qualitatively similar results to that of the 3D
problem. For the soft inclusion, on the other hand, the vertical response is
found to differ qualitatively for the two models.
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Conclusions

In the present study, fluid-solid interface response of the plate with inclusion
submerged in fluid is investigated for a 3D model. As in the 2D model, it
is found that the steady state fluid-solid interface response is very sensitive
upon the geometry and embedment depth of the inclusion and the off vertical
and azimuthal angles of incidence. In addition, the impedance contrast be-
tween the plate and the inclusion greatly influences the response. Moreover,
the response of a non-axisymmetric inclusion for a vertical incidence showed
significant variation in the non predominant displacement components with
change in the azimuthal angle. The vertical displacement field showed only
small variation with the azimuth.

Transient response shows similar features observed for the 2D model.
From the transient response of a plate with a very stiff inclusion and for
vertical incidence, it is found that the presence of the inclusion is indicated
very clearly by both the predominant and the non-predominant components
of displacement. In the predominant component this is evident from the al-
tered free-field near the inclusion and the scattered waves traveling away from
the inclusion. In the non-predominant component of the displacement, the
scattered field is observed as the waves traveling at the plate-fluid interface
with the P-wave velocity of the fluid. These waves are found to be almost
constant with increased distance from the scatterer. When the density of
the fluid is significantly lower than that of the plate, the effect of multiple
reflection at the plate surfaces is observed in the transient response. For
this case, the effect of the scattering from the inclusion is strongly felt only
when the inclusion is significantly stiffer than the plate. Due to the signif-
icant presence of the free-field waves trapped in the plate, the effect of the
scattered wave field is felt only locally and is not visible at farther distances
from the inclusion.

Comparison of the 2D and 3D responses indicates that for the stiff inclu-
sion, the 2D problem is found to give qualitatively similar results as that of
the 3D problem. But for the soft inclusion the vertical steady state response
is found to significantly differ for the two models. The 2D model showed con-
structive interference of the scattered wave field over the inclusion as opposed
to the destructive interference observed for the 3D model. This illustrates
the importance of the 3D modeling of the scattered wave problem.
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